Answer:
56.9 mmoles of acetate are required in this buffer
Explanation:
To solve this, we can think in the Henderson Hasselbach equation:
pH = pKa + log ([CH₃COO⁻] / [CH₃COOH])
To make the buffer we know:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺ Ka
We know that Ka from acetic acid is: 1.8×10⁻⁵
pKa = - log Ka
pKa = 4.74
We replace data:
5.5 = 4.74 + log ([acetate] / 10 mmol)
5.5 - 4.74 = log ([acetate] / 10 mmol)
0.755 = log ([acetate] / 10 mmol)
10⁰'⁷⁵⁵ = ([acetate] / 10 mmol)
5.69 = ([acetate] / 10 mmol)
5.69 . 10 = [acetate] → 56.9 mmoles
Answer:
One billion
Explanation:
A nanometer is a BILLIONTH of a meter which means it takes one billion to equal a meter
Quantity of K2S m = 0.105 m
Number of ions i = 2(K) + 1(S) = 3
Freezing point depression constant of water Kf = 1.86
delta T = i x m x Kf = 3 x 0.105 x 1.86 = 0.586
Freezing point = 0 - 0.586 = 0.586 C
Boiling point constant of water Kb = 0.512
delta T = i x m x Kb = 3 x 0.105 x 0.512 = 0.161
Boiling point = 100 + 0.161 = 100.161 C