<span>D. density is your answer</span>
Answer:
The launching point is at a distance D = 962.2m and H = 39.2m
Explanation:
It would have been easier with the drawing. This problem is a projectile launching exercise, as they give us data after the window passes and the wall collides, let's calculate with this data the speeds at the point of contact with the window.
X axis
x = Vox t
t = x / vox
t = 7.1 / 340
t = 2.09 10-2 s
In this same time the height of the window fell
Y = Voy t - ½ g t²
Let's calculate the initial vertical speed, this speed is in the window
Voy = (Y + ½ g t²) / t
Voy = [0.6 + ½ 9.8 (2.09 10⁻²)²] /2.09 10⁻² = 0.579 / 0.0209
Voy = 27.7 m / s
We already have the speed at the point of contact with the window. Now let's calculate the distance (D) and height (H) to the launch point, for this we calculate the time it takes to get from the launch point to the window; at this point the vertical speed is Vy2 = 27.7 m / s
Vy = Voy - gt₂
Vy = 0 -g t₂
t₂ = Vy / g
t₂ = 27.7 / 9.8
t₂ = 2.83 s
This is the time it also takes to travel the horizontal and vertical distance
X = Vox t₂
D = 340 2.83
D = 962.2 m
Y = Voy₂– ½ g t₂²
Y = 0 - ½ g t2
H = Y = - ½ 9.8 2.83 2
H = 39.2 m
The launching point is at a distance D = 962.2m and H = 39.2m
Answer:
f = 409 Hz
Explanation:
We have,
Length of the open organ pipe, l = 0.29 m
Frequency of vibration of second overtone, 
It is required to find the fundamental frequency of the pipe. For the open organ pipe, the frequency of second overtone is given by :

v is speed of sound
Let f is the fundamental frequency. It is given by :

The relation between f and f₂ can be written as :

So, the fundamental frequency of the pipe is 409 Hz.
The time taken for the two balls to hit each other is 8 s.
The given parameters:
- <em>Acceleration of the rocket, a = 2 m/s²</em>
- <em>Length of the chamber, s = 4 m</em>
- <em>Speed of the first ball, = V1 = 0.3 m/s</em>
- <em>Speed of the second ball, V2 = 0.2 m/s</em>
The time taken for the two balls to hit each other is calculated by applying relative velocity formula as shown below;

Thus, the time taken for the two balls to hit each other is 8 s.
Learn more about relative velocity here: brainly.com/question/17228388
Answer:
Explanation:
Expression for times period of a satellite can be given as follows
Time period T = 1.8 x 60 x 60
= 6480
T² =
where T is time period , r is radius of orbit , G is gravitational constant and M is mass of the satellite.
6480² = 4 x 3.14² x 7.5³ x 10¹⁸ / GM
GM = 4 x 3.14² x 7.5³ x 10¹⁸ / 6480²
= 3.96 X 10¹⁴
Expression for acceleration due to gravity
g = GM / R² where R is radius of satellite
20 = 3.96 X 10¹⁴ / R²
R² = 3.96 X 10¹⁴ / 20
= 1.98 x 10¹³ m
R= 4.45 x 10⁶ m