Explanation:
(a) E = F/q
E = 4.8×10^-17/1.6×10^-19
E = 300 N/C
(b) same magnitude of electric field is exerted on proton
You traveled a distance of 620.075 meters if it takes you 8.5 seconds to stop.
<u>Given the following data:</u>
- Initial velocity, U = 31.3 m/s
We know that acceleration due to gravity (a) for an object is equal to 9.8 meter per seconds square.
To find the distance traveled, we would use the second equation of motion:
Mathematically, the second equation of motion is given by the formula;

Where:
- S is the distance travelled.
- u is the initial velocity.
- t is the time measured in seconds.
Substituting the parameters into the formula, we have;

<em>Distance, S</em><em> = </em><em>620.075 meters.</em>
Therefore, you traveled a distance of 620.075 meters if it takes you 8.5 seconds to stop.
Read more: brainly.com/question/8898885
The answer is weak.
The interaction of nature that will depend on the distance through the
way it acts and involved in beta decay is the weak interaction or the weak
force. This interaction is the responsible for radioactive decay which also
plays a significant role in nuclear fission.
Answer:
A Fan Cart Initially Has An Acceleration Of 1.6m/s/s When It's Fan Is Directed Straight Backwards. If You Rotate The Fan By 45o, By What Percentage Do You Expect The Fan Cart's Thrust To Decrease? (Answer Should Be In Units Of 96)
a. 45%
b. 29%
c. 71%
d. 50%
The correct answer is d.
d. 50%
Explanation:
Fan cart acceleration = 1.6 m/s²
Thrust = 0.25×π×D²×ρ×v×Δv
where Δv = acceleration component and all factors remaining cconstant, when the fan is rotated by 45 ° the diameter changes to D₂ = sin 45 ×D
or 0.707×D. The thrust becomes 0.25×π×(0.707×D)²×ρ×v×Δv
=0.25×π×0.5×D²×ρ×v×Δv or 0.5(0.25×π×D²×ρ×v×Δv)
That is the thrust reduces by 50 %