Answer:
E = 10⁵ J
Explanation:
given,
Power, P = 100 TW
= 100 x 10¹² W
time, t = 1 ns
= 1 x 10⁻⁹ s
The energy of a single pulse is:-
Energy = Power x time
E = P t
E = 100 x 10¹² x 1 x 10⁻⁹
E = 10⁵ J
The energy contained in a single pulse is equal to 10⁵ J
Reflection: a change in direction of a wave at a boundary between two different media.
sentence: i saw my reflection in the mirror.
refraction: the bending of light as it passes from one transparent substance into another.
sentence: when light goes through glass, it’s a refraction.
diffraction: the bending of waves around the corners of an obstacle.
sentence: spaced tracks on a CD act as a diffraction.
absorption: the process or action by which one thing absorbs or is absorbed by another.
sentence: heat waves hitting the beach usually give most of their energy to the sand.
interference: when two waves lay on each other and their energies are either added together or cancelled out.
sentence: interference waves can be observed with all types of waves.
standing wave: two waves moving in opposite directions. they both have the same amplitude or frequency.
sentence: plucking the string of a guitar is an example of standing waves.
resonance: increased amplitude that occurs when the frequency of a force is equal or close to a natural frequency.
sentence:a buzz in your car that only occurs at a certain speed is an example or resonance.
Answer:
N₂=20.05 rpm
Explanation:
Given that
R= 19 cm
I=0.13 kg.m²
N₁ = 24.2 rpm

ω₁= 2.5 rad/s
m= 173 g = 0.173 kg
v=1.2 m
Initial angular momentum L₁
L₁ = Iω₁ - m v r ( negative sign because bird coming opposite to motion of the wire motion)
Final linear momentum L₂
L₂= I₂ ω₂
I₂ = I + m r²
The is no any external torque that is why angular momentum will be conserve
L₁ = L₂
Iω₁ - m v r = I₂ ω₂
Iω₁ - m v r = ( I + m r²) ω₂
Now by putting the all values
Iω₁ - m v r = ( I + m r²) ω₂
0.13 x 2.5 - 0.173 x 1.2 x 0.19 = ( 0.13 + 0.173 x 0.19²) ω₂
0.325 - 0.0394 = 0.136 ω₂
ω₂ = 2.1 rad/s

N₂=20.05 rpm
Answer:
Centripetal Acceleration = v^2/r
= (circumference/time)^2/r
= (2*pi*r/t)²)/r
= ((2³.14*50/14.3)²)/50
= 9.64 m/s²
brainlist?
Explanation:
Answer:
X2 - X2'=3.24×10⁻⁴m
Explanation:
Given Data
λ1=730nm=
λ2=640nm
d=0.61 mm
D=1.1 m
Distance of the second bright fringe from the central fringe is given by
Xn = = D x n x2 λ / d
X2 = 2 D λ1 / d
X2' = 2 D λ2 / d
Separation between the second bright fringes of the two wavelengths ( the separation between the second order fringes ) is ,
X2 - X2' = 2 D ( λ1 - λ2 ) / d
X2 - X2'= {2 x 1. 1 (730×10^-9 - 640×10^-9) }/ 0.61 x 10 ^-3
X2 - X2'=3.24×10⁻⁴m