Answer:
I tried
Explanation:
You have to check a 12 year olds respiration rate by Siting them down and trying to relax. It's best to take the respiratory rate while sitting up in a chair or in bed. Measure their breathing rate by counting the number of times their chest or abdomen rises over the course of one minute. Then Record this number. Now you have to answer the first few questions based on that.
Heart rate, blood pressure, respiratory rate and temperature are the big four vital signs.
8. Secondary assessments are used in order to determine the injury, how the injury occurred, how severe the injury is, and to eliminate further injury and that is why it is important.
9. It should only be performed when a person shows no signs of life or when they are unconscious, unresponsive, not breathing or not breathing normally.
In order to perform CPR, you need to check the scene and the person. Make sure the scene is safe, then tap the person on the shoulder and shout "Are you OK?" to ensure that the person needs help. Then pen the airway, Check for breathing, Push hard, push fast, deliver rescue breaths, continue CPR steps.
Answer:
The resultant velocity is 
Explanation:
Apply the law of conservation of momentum

Where
is the mass of the Luxury Liner = 40,000 ton
is the velocity of Luxury Liner = 20 knots due west
mass of freighter = 60,000
is the velocity of freighter = 10 knots due north
Apply the law of conservation of momentum toward the the west direction

So the equation would be

Substituting values

Where
the final velocity due west
Making
the subject


Apply the law of conservation of momentum toward the the north direction

So the equation would be

Where
the final velocity due north
Making
the subject


The resultant velocity is


