Answer:
1 mole of Al2O3 = 102 grams
1 mole of Al2 = 54 grams
102 grams of Al2O3 contains = 54 gram of Al2
10kg of Al2O3 contains = (54/102)*10000g Al2
= 5294.11 g Al2 or 5.29411 kg
Explanation:
Are there any values given in the question?
Answer : The final number of moles of gas that withdrawn from the tank to lower the pressure of the gas must be, 0.301 mol.
Explanation :
As we know that:

At constant volume and temperature of gas, the pressure will be directly proportional to the number of moles of gas.
The relation between pressure and number of moles of gas will be:

where,
= initial pressure of gas = 24.5 atm
= final pressure of gas = 5.30 atm
= initial number of moles of gas = 1.40 moles
= final number of moles of gas = ?
Now put all the given values in the above expression, we get:


Therefore, the final number of moles of gas that withdrawn from the tank to lower the pressure of the gas must be, 0.301 mol.
The test for this is fairly simple.
We take a glowing match or splint near the gas sample, if the glow intensifies, oxygen is present.
If a lit splint or match goes out with a popping sound, this means that hydrogen is present.