The complete balanced chemical reaction is:
2 AgNO3 + Na2S --> 2 NaNO3 + Ag2S
First let us calculate the number of moles of AgNO3.
moles AgNO3 = 0.315 M * 0.035 L
moles AgNO3 = 0.011025 mol
From the reaction, 1 mole of Na2S is needed for every 2
moles of AgNO3 hence:
moles Na2S required = 0.011025 mol AgNO3 * (1 mol Na2S / 2
mol AgNO3)
moles Na2S required = 5.5125 x 10^-3 mol
Therefore volume required is:
volume Na2S = 5.5125 x 10^-3 mol / 0.260 M
<span>volume Na2S = 0.0212 L = 21.2 mL</span>
Answer:
The primary producer would be at the bottom of the food chain.
Explanation:
Answer:
Molarity = 0.7 M
Explanation:
Given data:
Volume of KCl = 20 mL ( 0.02 L)
Molarity = 3.5 M
Final volume = 100 mL (0.1 L)
Molarity in 100 mL = ?
Solution:
Molarity = number of moles of solute / volume in litter.
First of all we will determine the number of moles of KCl available.
Number of moles = molarity × volume in litter
Number of moles = 3.5 M × 0.02 L
Number of moles = 0.07 mol
Molarity in 100 mL.
Molarity = number of moles / volume in litter
Molarity = 0.07 mol /0.1 L
Molarity = 0.7 M
Answer:
negative
Explanation:
Entropy is a measure of the "disorder" in a system.
In this reaction, the amount of disorder decreases. This is because one gas molecule (NH₃) has more order than two gas molecules (N₂ and H₂). Therefore, the entropy change should be negative.
Density is defined as the ratio of mass to the volume.
Density =
(1)
Mass of water = 10 grams
Mass of acetone = 10 grams
Density of water = 1 
Density of acetone = 0.7857 
Put the value of density of water and its mass in equation (1)
1
= 
Volume of water = 10 
Put the value of density of acetone and its mass in equation (1)
0.7857
= 
Volume of acetone = 12.72 
Thus, volume of acetone is more than volume of water because the density of acetone is lower.