Answer:
The pH changes by 2.0 if the [A-]/[HA] ratio of a base/weak acid mixture changes from 10/1 to 1/10.
Explanation:
To solve this problem we use the<em> Henderson-Hasselbach equation</em>:
Let's say we have a weak acid whose pKa is 7.0:
If the [A⁻]/[HA] ratio is 10/1, we're left with:
Now if the ratio is 1/10:
The difference in pH from one case to the other is (8.0-6.0) 2.0.
<em>So the pH changes by 2.0</em> if the [A-]/[HA] ratio of a base/weak acid mixture changes from 10/1 to 1/10.
<u>Keep in mind that no matter the value of pKa, the answer to this question will be the same.</u>
D. Disposed of according to your teachers instructions
Answer:
<h2>4.0 </h2>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ { H}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H%7D%5E%7B%2B%7D%5D)
From the question we have

We have the final answer as
<h3>4.0</h3>
Hope this helps you
Great question, let me know if you get the anwser!
Answer:
B. Bohr’s model electrons cannot exist between orbits, but in the electron cloud model, the location of the electrons cannot be predicted.
AND
C. The modern model explains all available data about atoms; Bohr’s model does not.
Explanation:
The answers are right on Edge. :)