Answer:
The acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Explanation:
The centripetal acceleration acts on a body when it is performing a circular motion.
Here, a point on the bicycle is performing circular motion as the rotation of the wheel produces a circular motion.
The centripetal acceleration of a point moving with a velocity
and at a distance of
from the axis of rotation is given as:

Here, 
∴ 
Therefore, the acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Don't text while driving
don't get your eyes off the road
don't get distracted
The area-
The area under the line in a velocity-time graph represents the distance travelled. To find the distance travelled in the graph above, we need to find the area of the light-blue triangle and the dark-blue rectangle.
<span><span>Area of light-blue triangle -
<span>The width of the triangle is 4 seconds and the height is 8 meters per second. To find the area, you use the equation: <span>area of triangle = 1⁄2 × base × height </span><span>so the area of the light-blue triangle is 1⁄2 × 8 × 4 = 16m. </span></span></span><span> Area of dark-blue rectangle
The width of the rectangle is 6 seconds and the height is 8 meters per second. So the area is 8 × 6 = 48m.</span><span> Area under the whole graph
<span>The area of the light-blue triangle plus the area of the dark-blue rectangle is:16 + 48 = 64m.<span>This is the total area under the distance-time graph. This area represents the distance covered.</span></span></span></span>
Answer:
a) 4500 cycles b) 0.0667s c) 6.67s
Explanation:
a) 15 Hz= 15 cycles/ s
5 mins= 300s
15 cycles/s * 300s= 4500 cycles
b) Period= 1/ frequency
Period= 1/ 15 cycles/s
Period= 0.0667s
c) Period * number of revolutions= time
0.0667 * 100= 6.67s
Answer:
According to Coulomb's Law, the potential energy of two charged particles is directly proportional to the product of the two charges and inversely proportional to the distance between the charges
Explanation:
According to Coulomb's Law, the potential energy of two charged particles is directly proportional to the product of the two charges and inversely proportional to the distance between the charges. Since the potential energy of two charged particles is directly proportional to the product of the two charges, its magnitude increases as the charges of the particles increases. For like charges, the potential energy is positive(the product of the two alike charges must be positive) and since potential energy is inversely proportional to the distance between the charges therefore it decreases as the particles get farther apart . For opposite charges, the potential energy is negative(the product of the two opposite charges must be negative) and since potential energy is inversely proportional to the distance between the two charges, it becomes more negative as the particles get closer together.