Answer:
a) V = 252 cm³
b) Vs = 72 cm³
Explanation:
a)
The volume of the water can be given by the following formula:

<u>V = 252 cm³</u>
<u></u>
b)
The volume of stone can be given by the change in volume of the water when the stone is dipped into it.

<u>Vs = 72 cm³</u>
Before a person walks through burning coal, the person will make sure their feet are very wet. When they start walking on the coal, this moisture will evaporate and form a protective gas layer underneath the person's feet. You can see examples of this if you happen to drip some water on a hot stove or any very hot surface. The water will very easily glide around on top of a newly formed layer of air underneath it -- like air hockey pucks on an air hockey table. Note that when someone walks through burning coal, typically this is also done very quickly to prevent a great deal of exposure to possible harm. By walking quickly, thinking positively, and letting the water cushion you from immediate danger over a short distance, such a task is possible. You may have also heard of physics teachers demonstrating how this principle works by sticking their hand first in a bucket of water and then quickly in a bucket of boiling molten lead. In the lead, their hand is protected briefly by a layer of gas from the evaporated water (the water vapor). I'm fairly sure that there is a name for this particular layer of gas, but I'm afraid the name is beyond me at the moment. In other words, water vapor has a low heat capacity and poor thermal conduction. Very often, the coals or wood embers that are used in fire walking also have a low heat capacity. Sweat produced on the bottom of people's feet also helps form a protective water vapor. All of this together makes it possible, if moving quickly enough, to walk across hot coals without getting burned. WARNING: Do not attempt to perform any of the actions described above. You can seriously injure yourself. Answered by: Ted Pavlic, Electrical Engineering Undergrad Student, Ohio St. (citing my source)
Answer:
Sound is produced when an object vibrates, creating a pressure wave.
Explanation:
This pressure wave causes particles in the surrounding medium (air, water, or solid) to have vibrational motion. ... The human ear detects sound waves when vibrating air particles vibrate small parts within the ear.
I think its c or d but im not quite sure.....