Answer:
I_weight = M L²
this value is much larger and with it it is easier to restore balance.I
Explanation:
When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by
v = w r
For man to maintain equilibrium needs the total moment to be zero
∑τ = I α
S τ = 0
The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.
Therefore the moment of the masses and the open is the one that must be zero.
If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope
I = ⅓ m L² / 4
As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.
If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is
I_weight = M L²
this value is much larger and with it it is easier to restore balance.
According to Newton's Second Law of Motion :
The Force acting on an Object is equal to Product of Mass of the Object and Acceleration produced due to the Force.
Force acting = Mass of the Object × Acceleration
Given : Force = 50 newton and Mass of the Object = 10 kg
Substituting the respective values in the Formula, we get :
50 N = 10 kg × Acceleration

Acceleration of the Object = 5 m/s²
1. A wheelchair ramp. Instead of using lifting force on the wheelchair, You use push or pull force on it.
2. A slide. Instead of throwing down an item, It uses gravitational potential energy make an object "move" down the slide.
3.A screw. It's reducing the force by twisting the screw out of something instead of pulling it out. (Sorry about my bad grammar).
The correct answer to go in the blank would be A) The particles are moving faster.
-- She went up for 0.4 sec and down for 0.4 sec.
-- The vertical distance traveled in gravity during ' t ' seconds is
D = (1/2) x (g) x (t)²
= (1/2) (9.8 m/s²) (0.4 sec)²
= (4.9 m/s²) x (0.16 s²)
= 0.784 meter ( B )