Answer:
The maximum emf induced in the ring
= (2.882 × 10⁻⁷) V
Explanation:
According to the law of electromagnetic induction, the emf induced in the ring is given by
E = N BA w sin wt
The maximum emf induced is
E = N BA w
B = 30.5 μT = (30.5 × 10⁻⁶) T
A = (πD²/4)
D = 1.75 cm = 0.0175 m
A = (π×0.0175²/4) = 0.000240625 m²
Nw = 2π × 6.25 = 39.29 rad/s
E = 30.5 × 10⁻⁶ × 0.000240625 × 39.29
E = (2.882 × 10⁻⁷) V
Hope this Helps!!!
Answer:
See below explanation
Explanation:
The correspondent chemical reaction for copper carbonate decomposed by heat is:
CuCO₃ (s) → CuO (s) + CO₂ (g)
Considering all molar mass (MM) for each element ( we consider rounded numbers) :
MM CuCO₃ = 123 g/mol
MM CuO = 79 g/mol
MM CO₂ = 44 g/mol
Statement mentions that scientis heated 123.6 g of CuCO₃ (almost a MM), until a black residue is obtained, which weights 79.6 g : this solid residue is formed by CuO, and the remaining mass (approximatelly 44 g) belongs to teh second product, this is, CO₂; as it is a gas compund, it is not certainly included on the solid residue.
So, law of conservation mass is true for this case, since: 123.6 g = 79.6 g + 44 g. As explained, on the solid residue, we don not include the 44 g, which "escaped" from our system, since it is a gas compound (CO₂)
It does produce 'sound' ... a compression wave traveling through the air. But your ears don't hear a sound that's vibrating less than 20 or 30 times every second. If you could swing your pendulum that fast, you could hear the sound of its vibrations pushing the air around.