Ignoring air resistance, the Kinetic energy before hitting the ground will be equal to the potential energy of the Piton at the top of the rock.
So we have 1/2 MV^2 = MGH
V^2 = 2GH
V = âš2GH
V = âš( 2 * 9.8 * 325)
V = âš 6370
V = 79.81 m/s
The atom must have gained 1 or more electrons or must have lost 1 or more electrons.
Answer:
![386.2^{\circ}F](https://tex.z-dn.net/?f=386.2%5E%7B%5Ccirc%7DF)
Explanation:
We are given that
![P_1=200lbf/in^2](https://tex.z-dn.net/?f=P_1%3D200lbf%2Fin%5E2)
![P_2=60lbf/in^2](https://tex.z-dn.net/?f=P_2%3D60lbf%2Fin%5E2)
![v_1=200ft/s](https://tex.z-dn.net/?f=v_1%3D200ft%2Fs)
![v_2=1700ft/s](https://tex.z-dn.net/?f=v_2%3D1700ft%2Fs)
![T_1=500^{\circ}F](https://tex.z-dn.net/?f=T_1%3D500%5E%7B%5Ccirc%7DF)
![Q=0](https://tex.z-dn.net/?f=Q%3D0)
![C_p=1BTU/lb^{\circ}F](https://tex.z-dn.net/?f=C_p%3D1BTU%2Flb%5E%7B%5Ccirc%7DF)
We have to find the exit temperature.
By steady energy flow equation
![h_1+v^2_1+Q=h_2+v^2_2](https://tex.z-dn.net/?f=h_1%2Bv%5E2_1%2BQ%3Dh_2%2Bv%5E2_2)
![C_pT_1+\frac{P^2_1}{25037}+Q=C_pT_2+\frac{P^2_2}{25037}](https://tex.z-dn.net/?f=C_pT_1%2B%5Cfrac%7BP%5E2_1%7D%7B25037%7D%2BQ%3DC_pT_2%2B%5Cfrac%7BP%5E2_2%7D%7B25037%7D)
![1BTU/lb=25037ft^2/s^2](https://tex.z-dn.net/?f=1BTU%2Flb%3D25037ft%5E2%2Fs%5E2)
Substitute the values
![1\times 500+\frac{(200)^2}{25037}+0=1\times T_2+\frac{(1700)^2}{25037}](https://tex.z-dn.net/?f=1%5Ctimes%20500%2B%5Cfrac%7B%28200%29%5E2%7D%7B25037%7D%2B0%3D1%5Ctimes%20T_2%2B%5Cfrac%7B%281700%29%5E2%7D%7B25037%7D)
![500+1.598=T_2+115.4](https://tex.z-dn.net/?f=500%2B1.598%3DT_2%2B115.4)
![T_2=500+1.598-115.4](https://tex.z-dn.net/?f=T_2%3D500%2B1.598-115.4)
![T_2=386.2^{\circ}F](https://tex.z-dn.net/?f=T_2%3D386.2%5E%7B%5Ccirc%7DF)
There should be a small amount of play in the wheel when the steering is locked. Gently pull the key from the ignition while you slowly jiggle the steering wheel back and forth. If this is the cause of the problem, the key should come out after a little effort.
Potential energy = mass x gravity x height
P.E = 4 x 9.8 x 3
P.E = 117.6 J