Correct answer choice is:
D. A frequency higher than the original frequency.
Explanation:
This is a true case of Doppler's effect. The Doppler effect can be defined as the effect originated by a traveling source of waves in which there is a visible higher variation in pulse for observers towards what the source is progressing and a visible descending shift in rate for observers from what the source is dropping.
The main determining factor in defining boundaries between layers of earth's atmosphere would be temperature changes in these layers. Temperature is one essential property that varies in the atmosphere. Based from this variation, the atmosphere is divided into four major layers and further to three smaller layers - troposphere, tropopause, the stratosphere, stratopause, the mesosphere, mesopause, and the thermosphere.The troposphere is the layer that is nearest to the surface of the Earth. It is the part where humans, plants and animals survive. Also, it is the warmest layer of the atmosphere. And as we go higher the atmosphere, the temperature would drop making it much cooler.
You can make sure there's no change in volume by keeping
your gas in a sealed jar with no leaks. Then you can play with
the temperature and the pressure all you want, and you'll know
that the volume is constant.
For 'ideal' gases,
(pressure) times (volume) is proportional to (temperature).
And if volume is constant, then
(pressure) is proportional to (temperature) .
So if you increase the temperature from 110K to 235K,
the pressure increases to (235/110) of where it started.
(400 kPa) x (235/110) = 854.55 kPa. (rounded)
Obviously, choice-b is the right one, but
I don't know where the .46 came from.
Answer:
Thomson's cathode-ray tube experiments led him to develop the plum-pudding model, which stated that each atom had positively charged particles spread throughout its negatively charged matter. Reword the statement so it is true. ... More alpha particles were deflected than he expected.
Explanation:
Well.. I hope it helps you..
Just correct me if I'm wrong..
Answer:
1.53 seconds
Explanation:
Applying,
T = 2usin∅/g................ Equation 1
Where, T = time of flight, u = initial velocity, ∅ = angle of projectile to the horizontal, g = acceleration due to gravity
From the question,
Given: u = 15 m/s, ∅ = 30°
Constant: g = 9.8 m/s²
Substitute these values in equation 1
T = 2(15)(sin30°)/9.8
T = 15/9.8
T = 1.53 seconds
Hence the time rate of flight is 1.53 seconds