Answer: hello your questions lacks the required resistor values therefore i will provide a general answer using an example
answer : a) 14 ohms b) 0.86 amps c) 10.32 V
Explanation:
Assuming the resistors are : 3 ohms , 4 ohms and 5 ohms
Voltage source = 12V
<u>Assuming that the Resistors are in series </u>
<u>a) Determine Total resistance </u>
Req = R1 + R2 + R3
= 3 + 4 + 5 = 14 ohms
<u>b) Total current </u>
Ieq = V / Req
= 12 / 14 = 0.86 amps
<u>c) The Total Voltage over the entire system </u>
Vt = ∑ Voltage drops
= ( 0.86 * 3 ) + ( 0.86 * 4 ) + ( 0.86 * 5 )
= 10.32 V
Distillation, Magnetism, Filtration, Crystallization, Extraction,
You need to consider the following:
Me (mass of Earth) = 5.98 x 10^24 kg
<span>Ms (mass of Sun) = 1.99 x 10^30 kg </span>
<span>G = 6.67 x 10^-11 N </span>
<span>
Formula:
F = G * M1M2/r^2
</span><span>The ratio FT/F = 4.02x10^-4 / 14.8
= 2.72x10^-5
</span><span>
Since,
1/2.72x10^-5 = 36800
The fraction ratio is 1/36800
</span>= <span>9.56x10^17 N</span>
The conclusions that are specifically supported by the data in Table 1 is that An increase in the number of rubber bands causes an increase in the acceleration. That is option D.
<h3>What is acceleration?</h3>
Acceleration is defined as the rate at which the velocity of a moving object changes with respect to time which is measured in meter per second per second (m/s²).
From the table given,
Trial 1 ----> 1 band = 0.24m/s²
Trial 2 ----> 2 bands = 0.51 m/s²
Trial 3 ----> 3 bands = 0.73 m/s²
Trial 4 -----> 4 bands = 1.00 m/s²
This clearly shows that increase in the number of bands increases the acceleration of one brick that was placed on the cart.
This is because increasing the number of rubber bands has the effect of doubling the force leading to an effective increase in velocity of the moving cart.
Learn more about acceleration here:
brainly.com/question/25749514
#SPJ1
The magnetic field lines due to a straight, current-carrying wire are circular.
<u>Explanation:</u>
The concepts of Electromagnetism brought a new revolution to the science world. The idea is the source of many new modes of power and machines that reduces the manual work. Motors are the best example of machines that run on the concepts of electromagnetism. So the concept is that a current-carrying conductor induces a magnetic field in its nearby premise.
This magnetic field can perceive by the magnetic line of forces. Now, if we pour some iron dust around a current-carrying conductor, we'll see a concentric circular pattern around the straight wire whose centre will be at the conductor axis. The pattern of these magnetic lines of force may deflect with the variation of current in the wire but remain in the circular format.