Answer:
7.32g of HNO3 are required.
Explanation:
1st) From the balanced reaction we know that 2 moles of HNO3 react with 1 mole of Ca(OH)2 to produce 2 moles of H2O and 1 mole of Ca(NO3)2.
From this, we find that the relation between HNO3 and Ca(OH)2 is that 2 moles of HNO3 react with 1 mole of Ca(OH)2.
2nd) This is the order of the relations that we have to use in the equation to calculate the grams of nitric acid:
• starting with the 4.30 grams of Ca(OH)2.
,
• using the molar mass of Ca(OH)2 (74g/mol).
,
• relation of the 2 moles of HNO3 that react with 1 mole of Ca(OH)2 .
,
• using the molar mass of HNO3 (63.02g/mol).

So, 7.32g of HNO3 are required.
<u>Answer:</u> The electronic configuration of gallium is written below and number of valence electrons is 3.
<u>Explanation:</u>
Electronic configuration is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom is determined by the atomic number of that atom.
Valence electrons are defined as the electrons present in the outermost shell of an atom.
We are given:
An element Gallium having atomic number as 31.
Number of electrons = 31
Electronic configuration of Gallium is: 
This element has 3 electrons in its outermost shell. So, the number of valence electrons is 3
Hence, the electronic configuration of gallium is written below and number of valence electrons is 3.
74.62 g of magnesium oxide is formed from 45.00 g magnesium so 74.62-45.00= 29.62 g of oxygen is consumed or in other words a new compound is formed in the burning of magnesium in oxygen with a heavier mass than the pure magnesium.
The rows are called Periods.