In theory, yes. The 2 problems are the materials used for clinical thermometers, & the temperature capacity of the clinical thermometer. If anything, change the material & extend the measurement threshold. At that point, it wouldn´t be used for clinical garbage anymore.
a) 1.57 m/s
The sock spins once every 2.0 seconds, so its period is
T = 2.0 s
Therefore, the angular velocity of the sock is

The linear speed of the sock is given by

where
is the angular velocity
r = 0.50 m is the radius of the circular path of the sock
Substituting, we find:

B) Faster
In this case, the drum is twice as wide, so the new radius of the circular path of the sock is twice the previous one:

At the same time, the drum spins at the same frequency as before, therefore the angular frequency as not changed:

Therefore, the new linear speed would be:

And substituting,

So, we see that the linear speed has doubled.
Gravity pulls the water down off the mountain, witch is run-off.
Answer:
k=320N/m
Explanation:
Step one:
given data
Let the initial/equilibrum position be x
mass m1= 0.2kg
F1= 0.2*10= 2N
elongation e= 9.5cm= 0.095m
mass m2=1kg
F2=1*10= 10N
elongation e= 12cm= 0.12m
Step two:
From Hooke's law, which states that provided the elastic limits of a material is not exceeded the extention e is proportional to applied Force F
F=ke
2=k(0.095-a)
2=0.095k-ka----------1
10=k(0.12-a)
10=0.12k-ka----------2
solving equation 1 and 2 simultaneously
10=0.12k-ka----------2
- 2=0.095k-ka----------1
8=0.025k-0
divide both side by 0.025
k=8/0.025
k=320N/m