Terminal velocity is the velocity at which a falling body experience
when its weight is equal to the force resistance of force opposing the
fall.
At terminal velocity the acceleration of the body is zero,
which implies that the value of the this velocity is a uniform.
Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y =
t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
Time period = time/no. of waves = 6/3 = 2s
Answer:
Gamma rays are mostly used in the radiotherapy/ radiooncology to treat cancer. They can also be used to spot tumours. Gamma rays can kill living cells and damage malignant tumor
We know, F = m * a
F = 10 * 5
F = 50 N
In short, Your Answer would be 50 Newtons
Hope this helps!