F=dP/dt. So you want the momentum to change as slowly as possible in time to minimize the force. So as you catch the egg, let your hand move backward with it for awhile, slowly bringing it to a stop. If you hold your hand steady when you catch it the force due to the impact could break it.
1 meter = 1e9 nm
To get meters, divide nanometers by 1e9: 9.95nm / 1x10^9 = 9.95x10^-9 meters
Answer: 9.95e-9 meters
We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.
To find out the number of stars that we will need to search to find a signal, we need to use the following formula:
- total of stars/civilizations
- 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)
This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.
Note: This question is incomplete; here is the complete question.
On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.
Assuming 100 civilizations existed.
Learn more about stars in: brainly.com/question/2166533
Answer:
Equilibrium quantity = 5
Equilibrium price = 40
Explanation:
given:
p = -x²-3x+80
p = 7x+5
For the equilibrium quantity the price from both the functions will be equal
thus, we have
-x² - 3x + 80 = 7x+5
⇒ x² +3x + 7x + 5 - 80 = 0
⇒x² + 10x - 75 = 0
now solving for x
x²- 5x + 15x -75 = 0
x(x-5) + 15(x-5) = 0
therefore, the two roots of the equation are
x = 5 and x = -15
since the quantity cannot be in negative
therefore, the equilibrium quantity will be = 5
now the equilibrium price can be found out by substituting the equilibrium quantity in any of the equation
thus,
p = -(5)² -3(5) + 80 = 40
or
p = 7(5) + 5 = 40
Radar waves are the waves with the lowest energy.