Answer:
The average force on ball by the golf club is 340 N.
Explanation:
Given that,
Mass of the golf ball, m = 0.03 kg
Initial speed of the ball, u = 0
Final speed of the ball, v = 34 m/s
Time of contact, 
We need to find the average force on ball by the golf club. We know that the rate of change of momentum is equal to the net external force applied such that :

So, the average force on ball by the golf club is 340 N.
Answer:
charcoal is the correct answer
hope it helps , pls mark me as brainliest
Sure !
Start with Newton's second law of motion:
Net Force = (mass) x (acceleration) .
This formula is so useful, and so easy, that you really
should memorize it.
Now, watch:
The mass of the box is 5.25 kilograms, and the box is
accelerating at the rate of 2.5 m/s² .
What's the net force on the box ?
Net Force = (mass) x (acceleration)
= (5.25 kilograms) x (2.5 m/s²)
Net force = 13.125 newtons .
But hold up, hee haw, whoa ! Wait a second !
Bella is pushing with a force of 15.75 newtons, but the box
is accelerating as if the force on it is only 13.125 newtons.
What happened to the rest of Bella's force ? ?
==> Friction is pushing the box in the opposite direction,
and cancelling some of Bella's force.
How much ?
(Bella's 15.75 newtons) minus (13.125 that the box feels)
= 2.625 newtons backwards, applied by friction.
Answer:
160000000 kg.
Explanation:
p=mv
p=1.6x10^9
v=10m/s
rearrange and substitute:
(1.6x10^9)=m(10)
m=(1.6x10^9)/10
m= 1.6x10^8 kg.