Answer:

Explanation:
Given:
- mass of John,

- mass of William,

- length of slide,

(A)
height between John and William, 
<u>Using the equation of motion:</u>

where:
v_J = final velocity of John at the end of the slide
u_J = initial velocity of John at the top of the slide = 0
Now putting respective :


<u>Now using the law of conservation of momentum at the bottom of the slide:</u>
<em>Sum of initial momentum of kids before & after collision must be equal.</em>

where: v = velocity with which they move together after collision

is the velocity with which they leave the slide.
(B)
- frictional force due to mud,

<u>Now we find the force along the slide due to the body weight:</u>



<em><u>Hence the net force along the slide:</u></em>

<em>Now the acceleration of John:</em>



<u>Now the new velocity:</u>



Hence the new velocity is slower by

A Framework for K–12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (Framework) recommends science education in grades K–12 be built around three major dimensions: science and engineering practices, crosscutting concepts that unify the study of science and engineering through their common application across fields, and core ideas in the major disciplines of natural science.
Power = work/time
= 500/10
= 50J/s or 50 watt
The centrifugal force C = mv^2/r = kq^2/r^2 = P centripetal force. m is the electron mass, q are the proton and electron charges (opposites), and r is the Bohr radius.
Thus 1/2 mv^2/r = 1/2 kq^2/r^2 and KE = 1/2 mv^2 = 1/2 kq^2/r = 1/2 PE
Therefore KE/PE = 1/2, no matter what state the electron is in.