I believe that this question has the following choices to
choose from:
placer deposits
fossil compaction
hydrothermal solutions
igneous processes
Actually among all, I have never encountered an ore that
formed due to fossil compaction. I suppose we can get minerals such as marble
or lime but not ores. So the answer is:
<span>fossil compaction (answer)</span>
Answer: 1477.78 N
Explanation:
Let's assume that the cross sectional area of the smaller piston be A1
let's also assume the cross sectional area of the larger piston be A2
We assume the force applied to the smaller piston be F1
We also assume the force applied to the larger piston be F2
we then use the formula
F1/A1 = F2/A2
From our question,
The radius of the smaller piston is 5 cm = 0.05 m
The radius of the larger piston is 15 cm = 0.15 m
The force of the larger piston is 13300 N
The force of the smaller piston is unknown = F
A1 = πr² = 3.142 * 0.05² = 0.007855 m²
A2 = πr² = 3.142 * 0.15² = 0.070695 m²
F1/0.007855 = 13300/0.070695
F1 = (13300 * 0.007855) / 0.070695
F1 = 104.4715 / 0.070695
F1 = 1477.78 N
Thus, the force the compressed air must exert is 1477.78 N
<span>C.heat will flow from both the coolant and the air
</span>
Explanation:
<h2>law of conservation of mass</h2>
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
Solution:
Mass(m)=20kg
Displacement (s)=1.5m
For 1 kg force of gravity=10N
We have,
F=mg
or,10=1xg
or g=10m/s^2
Then,
Total work done by the coolie(W)=force x displacement
or,W=mxgxs
=20x10x1.5
=300J