Answer: B. The gravitational field strength of Planet X is Wx/m.
Explanation:
Weight is a force, and as we know by the second Newton's law:
F = m*a
Force equals mass times acceleration.
Then if the weight is:
Wx, and the mass is m, we have the equation:
Wx = m*a
Where in this case, a is the gravitational field strength.
Then, isolating a in that equation we get:
Wx/m = a
Then the correct option is:
B. The gravitational field strength of Planet X is Wx/m.
The magnitude and direction of the electric field in the wire are mathematically given as
![L &=[(v / L) v / m] \hat{i}](https://tex.z-dn.net/?f=L%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D%20%5Chat%7Bi%7D)
<h3>What is the magnitude and direction of the electric field in the wire?</h3>
Generally, the equation for is mathematically given as
A cylindrical wire that is straight and parallel to the x-axis has the following dimensions: length L, diameter d, resistivity p, diameter d, potential v, and z length. combining elements from both sides
E d 
![\begin{aligned}&-E \int_0^L d x=\int_v^0 d v \\\therefore E \cdot L &=v \\L &=[(v / L) v / m] \hat{i}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26-E%20%5Cint_0%5EL%20d%20x%3D%5Cint_v%5E0%20d%20v%20%5C%5C%5Ctherefore%20E%20%5Ccdot%20L%20%26%3Dv%20%5C%5CL%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D%20%5Chat%7Bi%7D%5Cend%7Baligned%7D)
In conclusion, the magnitude and direction of the electric field in the wire are given as
![L &=[(v / L) v / m]](https://tex.z-dn.net/?f=L%20%26%3D%5B%28v%20%2F%20L%29%20v%20%2F%20m%5D)
Read more about electric fields
brainly.com/question/15800304
#SPJ4
Since this is a horizontal path, we can neglect the force of gravity acting on the body. So in this case we have that the force of tension is equal to the centripetal force, because we have a circular path.
Fcp=T, where T is the force of tension and Fcp is the centripetal force.
m*(v²/R)=250 N, where m is the mass of the body and it is m=0.3 kg, v is the max speed of the body, and that is what we are looking for and R is the max length of the string and it is R=0.75 m.
We divide by m and multiply by R and we get:
v²=(250*R)/m, take the square root:
v=√((250*R)/m)=25 m/s
So the max speed of the body if the max tension is T= 250 N and its max length is R=0.75 m is V=25 m/s.
Answer:
As the temperature increases, the volume of the material also increases. This is known as thermal expansion. It can also be explained as the fractional change in the length or volume per unit change in the temperature.
The relation between alpha, beta, and gamma is given in the form of a ratio and the ratio is 1:2:3 and can be expressed as:
alpha=fracbeta2=fracgamma3
Following is the relation between the three:
L = L (1 + α.ΔT)
Where, α is the coefficient of linear expansion
A = A (1 + β.ΔT)
Where, β is the coefficient of aerial expansion
V = V (1 + γ.ΔT)
Where, γ is the coefficient of cubical expansion
V = V + γV.ΔT
V = V (1 + γ.ΔT)
L3 = L3 (1 + α.ΔT)3
L3 = L3 (1 + 3α.ΔT + 3α2.ΔT2 + α3.ΔT3)
L3 = L3 (1 + 3α.ΔT)
The a means acceleration. F net means the Net force.