Hi, you haven't provided the programing language in which you need the code, I'll just explain how to do it using Python, and you can apply a similar method for any programming language.
Answer:
1. def pyramid_volume(base_length, base_width, pyramid_height):
2. volume = base_length*base_width*pyramid_height/3
3. return(volume)
Explanation step by step:
- In the first line of code, we define the function pyramid_volume and it's input parameters
- In the second line, we perform operations with the input values to get the volume of the pyramid with a rectangular base, the formula is V = l*w*h/3
- In the last line of code, we return the volume
In the image below you can see the result of calling the function with input 4.5, 2.1, 3.0.
Answer:
a) ∝ and β
The phase compositions are :
C
= 5wt% Sn - 95 wt% Pb
C
= 98 wt% Sn - 2wt% Pb
b)
The phase is; ∝
The phase compositions is; 82 wt% Sn - 91.8 wt% Pb
Explanation:
a) 15 wt% Sn - 85 wt% Pb at 100⁰C.
The phases are ; ∝ and β
The phase compositions are :
C
= 5wt% Sn - 95 wt% Pb
C
= 98 wt% Sn - 2wt% Pb
b) 1.25 kg of Sn and 14 kg Pb at 200⁰C
The phase is ; ∝
The phase compositions is; 82 wt% Sn - 91.8 wt% Pb
Csn = 1.25 * 100 / 1.25 + 14 = 8.2 wt%
Cpb = 14 * 100 / 1.25 + 14 = 91.8 wt%
Answer:
true
Explanation:
True, there are several types of polymers, thermoplastics, thermosets and elastomers.
Thermosets are characterized by having a reticulated structure, so they have low elasticity and cannot be stretched when heated.
Because of the above, thermosetting polymers burn when heated.
Answer:
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Explanation:
We are given;
T∞ = 70°C.
Inner radii pipe; r1 = 6cm = 0.06 m
Outer radii of pipe;r2 = 6.5cm=0.065 m
Electrical heat power; Q'_s = 300 W
Since power is 300 W per metre length, then; L = 1 m
Now, to the heat flux at the surface of the wire is given by the formula;
q'_s = Q'_s/A
Where A is area = 2πrL
We'll use r2 = 0.065 m
A = 2π(0.065) × 1 = 0.13π
Thus;
q'_s = 300/0.13π
q'_s = 734.56 W/m²
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Answer:
a) V =10¹¹*(1.5q₁ + 3q₂)
b) U = 1.34*10¹¹q₁q₂
Explanation:
Given
x₁ = 6 cm
y₁ = 0 cm
x₂ = 0 cm
y₂ = 3 cm
q₁ = unknown value in Coulomb
q₂ = unknown value in Coulomb
A) V₁ = Kq₁/r₁
where r₁ = √((6-0)²+(0-0)²)cm = 6 cm = 0.06 m
V₁ = 9*10⁹q₁/(0.06) = 1.5*10¹¹q₁
V₂ = Kq₂/r₂
where r₂ = √((0-0)²+(3-0)²)cm = 3 cm = 0.03 m
V₂ = 9*10⁹q₂/(0.03) = 3*10¹¹q₂
The electric potential due to the two charges at the origin is
V = ∑Vi = V₁ + V₂ = 1.5*10¹¹q₁ + 3*10¹¹q₂ = 10¹¹*(1.5q₁ + 3q₂)
B) The electric potential energy associated with the system, relative to their infinite initial positions, can be obtained as follows
U = Kq₁q₂/r₁₂
where
r₁₂ = √((0-6)²+(3-0)²)cm = √45 cm = 3√5 cm = (3√5/100) m
then
U = 9*10⁹q₁q₂/(3√5/100)
⇒ U = 1.34*10¹¹q₁q₂