Answer:
The decelerating force is 
Solution:
As per the question:
Frontal Area, A = 
Speed of the spaceship, v = 
Mass density of dust, 
Now, to calculate the average decelerating force exerted by the particle:
(1)
Volume, 
Thus substituting the value of volume, V in eqn (1):

where
A = Area
v = velocity
t = time
(2)

From Newton's second law of motion:

Thus differentiating w.r.t time 't':

where
= average decelerating force of the particle
Now, substituting suitable values in the above eqn:

Answer:
1. A 1,100 kg car comes uniformly to a stop. If the vehicle is accelerating at2 1.2 m/s, which force is closest to the net force acting on the vehicle?
-9,600 N
-1,300 N
-900 N
-94 N
Explanation: Awnser is 1,300
Opposite for opposite are follows
Similiar
Like
Same
Agreeing
Answer:
Explanation:
8. Which process(es) of the water cycle—precipitation, evaporation, condensation, runoff, percolation or transpiration-might contribute to the addition of pollutants to rivers, lakes, and oceans? Why? Precipitation and runoff would be the most responsible processes.
Answer:
F = - 3.56*10⁵ N
Explanation:
To attempt this question, we use the formula for the relationship between momentum and the amount of movement.
I = F t = Δp
Next, we try to find the time that the average speed in the contact is constant (v = 600m / s), so we say
v = d / t
t = d / v
Given that
m = 26 g = 26 10⁻³ kg
d = 50 mm = 50 10⁻³ m
t = d/v
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
F t = m v - m v₀
This is so, because the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26*10⁻³ (-500 - 640) / 8.33*10⁻⁵
F = - 3.56*10⁵ N
The negative sign is as a result of the force exerted against the bullet