Answer:
To find the circumference (orbit) of an object, you use Pi x Diameter.
As you have the circumference of B, you divide it by Pi to get the Diameter.
So 120 divided by 3.141592654 = 38.2 minutes for the Diameter.
As' radius and Diameter will be 3x greater than B.
38.2 x 3 = 114.6
To get back to the orbital period, times 114.6 by Pi, and you will get 360 minutes
HOPE THIS HELPS AND PLS MARK AS BRAINLIEST
THNXX :)
Answer:
The horizontal component of her velocity is approximately 1.389 m/s
The vertical component of her velocity is approximately 7.878 m/s
Explanation:
The given question parameters are;
The initial velocity with which Margaret leaps, v = 8.0 m/s
The angle to the horizontal with which she jumps, θ = 80° to the horizontal
The horizontal component of her velocity, vₓ = v × cos(θ)
∴ vₓ = 8.0 × cos(80°) ≈ 1.389
The horizontal component of her velocity, vₓ ≈ 1.389 m/s
The vertical component of her velocity,
= v × sin(θ)
∴
= 8.0 × sin(80°) ≈ 7.878
The vertical component of her velocity,
≈ 7.878 m/s.
1) the weight of an object at Earth's surface is given by

, where m is the mass of the object and

is the gravitational acceleration at Earth's surface. The book in this problem has a mass of m=2.2 kg, therefore its weight is

2) On Mars, the value of the gravitational acceleration is different:

. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth:

3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus:

4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg:

5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as

<span>6) On Earth, the gravity acceleration is </span>

<span>. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is
</span>

<span>
</span>
Answer:
The magnitude of the impulse is 1.33 kg m/s
Explanation:
please look at the solution in the attached Word file