C.
Because it’s falling it has acceleration in the y direction. If you have acceleration, you usually also have velocity, and since kinetic energy is KE= Mv^2 you know you have it. It also has potential energy because it has some height to it, and PE= Mgh.
In the thermal equilibrium, the change in temperature is said to be zero in between the bodies. Thermal equilibrium is reached when both objects have the same temperature.
<h3>What is thermal equilibrium?</h3>
Thermal equilibrium is easily explained by the zeroth law of thermodynamics. If any two-body is at thermal equilibrium there is no change in the temperature of the body.
According to zeroth law if body A is in thermal equilibrium with body B and body B is in thermal equilibrium with C . So body A and C are also in thermal equilibrium.
In the thermal equilibrium, the net heat transfer is said to be zero in between the bodies.
Hence option A IS RIGHT. Thermal equilibrium is reached when both objects have the same temperature
To learn more about the thermal equilibrium refer to the link;
brainly.com/question/2637015
Answer:
yes
Explanation:
velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both
The answer is D, hope this helped!
Answer:
100 cm³
Explanation:
Use ideal gas law:
PV = nRT
where P is absolute pressure, V is volume, n is number of moles, R is ideal gas constant, and T is absolute temperature.
n and R are constant, so:
P₁V₁/T₁ = P₂V₂/T₂
If we say point 1 is at 40m depth and point 2 is at the surface:
P₂ = 1.013×10⁵ Pa
T₂ = 20°C + 273.15 = 293.15 K
P₁ = ρgh + P₂
P₁ = (1000 kg/m³ × 9.8 m/s² × 40 m) + 1.013×10⁵ Pa
P₁ = 4.933×10⁵ Pa
T₁ = 4.0°C + 273.15 = 277.15 K
V₁ = 20 cm³
Plugging in:
(4.933×10⁵ Pa) (20 cm³) / (277.15 K) = (1.013×10⁵ Pa) V₂ / (293.15 K)
V₂ = 103 cm³
Rounding to 1 sig-fig, the bubble's volume at the surface is 100 cm³.