First, we determine the mass of each element from the data collected. We can get the mass of molybdenum Mo from the difference between the mass of crucible and molybdenum and the mass of crucible:
Mass of molybdenum = 39.52 – 38.26 = 1.26 g Mo
We can calculate for the mass of molybdenum oxide from the difference between the mass of crucible and molybdenum oxide and the mass of crucible:
Mass of molybdenum oxide = 39.84 – 38.26 = 1.58g
We can now compute for the mass of oxygen O by subtracting the mass of molybdenum from the mass of molybdenum oxide:
Mass of oxygen in molybdenum oxide = 1.58 – 1.26 = 0.32g O
To convert mass to moles, we use the molar mass of each element.
1.26 g Mo * 1 mol Mo / 95.94 g Mo = 0.0131 mol Mo
0.32 g O * 1 mol O / 15.999 g O = 0.0200 mol O
0.0131 mol is the smallest number of moles. We divide each mole value by this number:
0.0131 mol Mo / 0.0131 = 1
0.0200 mol O / 0.0131 = 1.53
Multiplying these results by 2 to get the lowest whole number ratio,
0.0131 mol Mo / 0.0131 = 1 * 2 = 2
0.0200 mol O / 0.0131 = 1.5 * 2 = 3
Thus, we can write the empirical formula as Mo2O3.
Answer:
B) a substance's color and odor changed Explanation: A signal that a chemical change has occurred is when its odor (its smell) or its appearance has changed.
Answer:
maybe 200g
I don't know thats just a guess
HOPE ITS TURE
Answer:
Nonrenewable energy resources, like coal, nuclear, oil, and natural gas, are available in limited supplies. ... Renewable resources are replenished naturally and over relatively short periods of time. The five major renewable energy resources are solar, wind, water (hydro), biomass, and geotherm
Explanation: