In a parallel connection, the equivalent resistance is the summation of the inverse of each individual resistances. It is mathematically expressed as 1/ Req = 1/10 +1/20 + 1/25 = 5.263 ohms. Also, the voltage across each resistor is equal to the input voltage, therefore I = 100 / 10 = 10 Amps. I hope this helped you.
Answer:
(a) t = 1.14 s
(b) h = 0.82 m
(c) vf = 7.17 m/s
Explanation:
(b)
Considering the upward motion, we apply the third equation of motion:

where,
g = - 9.8 m/s² (-ve sign for upward motion)
h = max height reached = ?
vf = final speed = 0 m/s
vi = initial speed = 4 m/s
Therefore,

<u>h = 0.82 m</u>
Now, for the time in air during upward motion we use first equation of motion:

(c)
Now we will consider the downward motion and use the third equation of motion:

where,
h = total height = 0.82 m + 1.8 m = 2.62 m
vi = initial speed = 0 m/s
g = 9.8 m/s²
vf = final speed = ?
Therefore,

<u>vf = 7.17 m/s</u>
Now, for the time in air during downward motion we use the first equation of motion:

(a)
Total Time of Flight = t = t₁ + t₂
t = 0.41 s + 0.73 s
<u>t = 1.14 s</u>
If they are moving at the same speed then it would be true because the larger object would have more mass and would have more momentum then the smaller object that has less mass! Hope this helps!
The particles vibrate against each other in a soild state........i think
Friction , as the angle gets huger and higher , this is less and less normal force into the inclined plane .