1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexgriva [62]
4 years ago
7

What is the weight of a 42 kg object if the object was on the moon?

Physics
1 answer:
sveticcg [70]4 years ago
4 0
(1.6 m/s²)(42 Kg)= 80 N
You might be interested in
Give 1 real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is c
OverLord2011 [107]

Answer:

On real life example of a scenario that takes advantage of the inverse relationship between force and time when impulse is constant is when making a serve with a lawn tennis racket

How It is an example of impulse is that when a serve is made by moving the bat slowly, the lawn tennis player uses less force and the ball is in contact with the string for longer a period

When however, the lawn tennis player moves the racket faster, with the strings of the racket highly tensioned  he uses more force and the ball also spends less time on the racket to produce the same momentum

Explanation:

The impulse of a force, ΔP is given by the following formula;

ΔP = F × Δt

Where ΔP is constant, we have;

F ∝ 1/Δt

Therefore, for the same impulse, when the force is increased, the time of contact is decreases and vice versa.

7 0
3 years ago
Two airplanes leave an airport at the same time.The velocity of the first airplane is 700 m/h at a heading of 31.3 the velocity
MArishka [77]

Here in order to find out the distance between two planes after 3 hours can be calculated by the concept of relative velocity

v_{12} = v_1 - v_2

here

speed of first plane is 700 mi/h at 31.3 degree

v_1 = 700 cos31.3\hat i + 700 sin31.3\hat j

v_1 = 598.12\hat i + 363.7\hat j

speed of second plane is 570 mi/h at 134 degree

v_2 = 570 cos134 \hat i + 570 sin134 \hat j

v_2 = -396\hat i + 410\hat j

now the relative velocity is given as

v_{12} = (598.12 + 396)\hat i + (363.7 - 410)\hat j

v_{12} =994.12\hat i -46.3 \hat j

now the distance between them is given as

d = v* t

d = (994.12 \hat i - 46.3 \hat j)* 3

d = 2982.36\hat i - 138.9\hat j

so the magnitude of the distance is given as

d = \sqrt{2982.36^2 + 138.9^2}

d = 2985.6 miles

so the distance between them is 2985.6 miles

5 0
3 years ago
Read 2 more answers
Un hamster esta sentado sobre un tocadisco cuya rapidez angular es constante si el hamster se mueve a un punto localizado al dob
kotegsom [21]

Answer:

b) se duplica

Explanation:

The disk is moving with constant angular velocity, let's call it \omega.

The linear velocity of a point on the disk is given by

v=\omega r

where r is the distance of the point from the axis of rotation.

In this problem, the object is moved at a distance twice as far as the initial point, so

r' = 2r

Therefore, the new linear velocity is

v'=\omega r' = \omega (2r) = 2 \omega r = 2 v

So, the velocity has doubled, and the correct answer is

b) se duplica

8 0
3 years ago
How much energy is given to each coulomb of charge passing through a 6 V battery
ELEN [110]
1 volt = 1 joule per coulomb. Current doesn't actually pass 'through' a battery. But if it did, then each coulomb would gain or lose 6 joules in traversing 6 volts, depending on its sign, and whether it climbed or fell.
4 0
3 years ago
A plane electromagnetic wave, with wavelength 4.1 m, travels in vacuum in the positive direction of an x axis. The electric fiel
marusya05 [52]

(a) 7.32\cdot 10^7 Hz

The frequency of an electromagnetic waves is given by:

f=\frac{c}{\lambda}

where

c=3.0\cdot 10^8 m/s is the speed of light

\lambda=4.1 m is the wavelength of the wave in the problem

Substituting into the equation, we find

f=\frac{3.0\cdot 10^8 m/s}{4.1 m}=7.32\cdot 10^7 Hz

(b) 4.60\cdot 10^8 rad/s

The angular frequency of a wave is given by

\omega = 2\pi f

where

f is the frequency

For this wave,

f=7.32\cdot 10^7 Hz

So the angular frequency is

\omega=2\pi(7.32\cdot 10^7 Hz)=4.60\cdot 10^8 rad/s

(c) 1.53 m^{-1}

The angular wave number of a wave is given by

k=\frac{2\pi}{\lambda}

where

\lambda is the wavelength of the wave

For this wave, we have

\lambda=4.1 m

so the angular wave number is

k=\frac{2\pi}{4.1 m}=1.53 m^{-1}

(d) 1.03\cdot 10^{-6}T

For an electromagnetic wave,

E=cB

where

E is the magnitude of the electric field component

c is the speed of light

B is the magnitude of the magnetic field component

For this wave,

E = 310 V/m

So we can re-arrange the equation to find B:

B=\frac{E}{c}=\frac{310 V/m}{3\cdot 10^8 m/s}=1.03\cdot 10^{-6}T

(e) z-axis

In an electromagnetic wave, the electric field and the magnetic field oscillate perpendicular to each other, and they both oscillate perpendicular to the direction of propagation of the wave. Therefore, we have:

- direction of propagation of the wave --> positive x axis

- direction of oscillation of electric field --> y axis

- direction of oscillation of magnetic field --> perpendicular to both, so it must be z-axis

(f) 127.5 W/m^2

The time-averaged rate of energy flow of an electromagnetic wave is given by:

I=\frac{E^2}{2\mu_0 c}

where we have

E = 310 V/m is the amplitude of the electric field

\mu_0 is the vacuum permeability

c is the speed of light

Substituting into the formula,

I=\frac{(310 V/m)^2}{2(4\pi\cdot 10^{-7} H/m) (3\cdot 10^8 m/s)}=127.5 W/m^2

(g) 1.53\cdot 10^{-8} kg m/s

For a surface that totally absorbs the wave, the rate at which momentum is transferred to the surface given by

\frac{dp}{dt}=\frac{A}{c}

where the <S> is the magnitude of the Poynting vector, given by

=\frac{EB}{\mu_0}=\frac{(310 V/m)(1.03\cdot 10^{-6} T)}{4\pi \cdot 10^{-7}H/m}=254.2 W/m^2

and where the surface is

A = 1.8 m^2

Substituting, we find

\frac{dp}{dt}=\frac{(254.2 W/m^2)(1.8 m^2)}{3\cdot 10^8 m/s}=1.53\cdot 10^{-8} kg m/s

(h) 8.47\cdot 10^{-7} N/m^2

For a surface that totally absorbs the wave, the radiation pressure is given by

p=\frac{}{c}

where we have

=254.2 W/m^2

c=3\cdot 10^8 m/s

Substituting, we find

p=\frac{254.2 W/m^2}{3\cdot 10^8 m/s}=8.47\cdot 10^{-7} N/m^2

8 0
3 years ago
Other questions:
  • Is it true that newtons laws of universal gravitation states that every object in the universe attracts every other object
    15·1 answer
  • Desceibe how the ringing sound of a telephone
    14·1 answer
  • A coil has an inductance of 8.00 mh, and the current in it changes from 0.200 a to 1.50 a in a time interval of 0.350 s. find th
    14·1 answer
  • Most engines will contain how many cylinders
    9·2 answers
  • As an object is undergoing free fall motion.As it falls the objects?,speed increases,acceleration increases,both of these,or non
    10·1 answer
  • Can kintic friction affect mechanical energy
    7·1 answer
  • Which unit represents a value that is one order of magnitude larger than a decimeter?
    5·2 answers
  • Qualitative observation requires numerous data to discribe research A .true B. False
    9·1 answer
  • How do I delete a question on here
    7·2 answers
  • motorcycle starting from rest cover 200 metre distance in 6 second calculate final velocity and acceleration of the motorcycle ​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!