Answer: 37.981 m/s
Explanation:
This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:
<u>x-component:
</u>
(1)
Where:
is the point where the ball strikes ground horizontally
is the ball's initial speed
because we are told the ball is thrown horizontally
is the time since the ball is thrown until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the ball
is the final height of the ball (when it finally hits the ground)
is the acceleration due gravity
Knowing this, let's start by finding
from (2):
<u></u>
(3)
(4)
(5)
(6)
Then, we have to substitute (6) in (1):
(7)
And find
:
(8)
(9)
(10)
On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity
:
(11)
(12)
(13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.
However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).
Answer:
Wavelength, 
Explanation:
Given that,
Number of cycles in a spiral spring is 2.91 in every 3.67 s
The velocity of the pulse in the spring is 0.925 cm/s, v = 0.00925 m/s
To find,
Wavelength
Solution,
Number of cycles per unit time is called frequency of a wave. The frequency of the longitudinal pulse is,

The wavelength of a wave is given by :



So, the wavelength of the longitudinal pulse is 0.011 meters. Hence, this is the required solution.
Answer:The correct options are:
1. A system is a group of objects analyzed as one unit.
2. Energy that moves across system boundaries is conserved.
Explanation:
A system is defined as group of interrelated or interacting items existing as a single unit or a whole to achieve a specific objective.Energy lost by the system is equal to the energy gained by the surroundings.
Two statements are true about a system:
- A system is a group of objects analyzed as one unit.
- Energy that moves across system boundaries is conserved.
Answer:
Total distance traveled = 9 m
Explanation:
Given:
Distance travel towards north = 3 meter
Distance travel towards south = 6 meter
Find:
Total distance traveled
Computation:
Total distance traveled = Sum of total distance
Total distance traveled = Distance travel towards north + Distance travel towards south
Total distance traveled = 3 m + 6 m
Total distance traveled = 9 m
I think it is B, because the sun’s size is pretty average