The correct answer is C. Atoms are incredibly small and can bearly be seen with the most powerful electron microscopes. The nucleas of an atom contains protons and neutrons with electrons in orbitals around the nucleas. I hope this helps. Let me know if anything is unclear.
The atmospheric pressure will be:
The pressure of the atmosphere resulting from the mercury column is 0.959 atm
What is atmospheric pressure?
The force that an object experiences from the weight of the air above it per unit area are known as atmospheric pressure.
Given: Height of mercury column = 729 mm Hg
To find: The pressure of the atmosphere
Calculation:
The atmospheric column resulting from the mercury column is calculated as follows:
1 atm =760 mm Hg
So, we can convert the 729 mm Hg to atm, and we get
Atmospheric pressure = 729 x 1 atm / 760 = 0.959 atm
Learn more about atmospheric pressure here,
brainly.com/question/14315894
#SPJ4
Answer:
Be,Mg,Ra etc
Explanation:
It should be palced in group 2A because as it reacts with chlorine in ratio of 1:2 . It's valancy is 2 and is metal as it react with non metal donating two electrons .
one more thing it fits there orderly
Soap is the sodium or potassium salt of long chain of fatty acid. Fatty acids when treated with NaOH or KOH forms Soap. This process is called as Saponification. Examples of Soap are as follow,
1. Sodium Stearate C₁₇H₃₅COONa
2. Potassium Oleate C₁₇H₃₃COOK
Reaction of Soap with MgCl₂;
When Soap is treated with MgCl₂ or CaCl₂ it forms insoluble precipitate called S.C.U.M. The reactions with MgCl₂ are as follow,
2C₁₇H₃₅COONa + MgCl₂ --------> 2C₁₇H₃₅COOMg + 2 NaCl
2C₁₇H₃₃COOK + MgCl₂ --------> 2C₁₇H₃₅COOMg + 2 KCl
These reaction are often found in hard water. And this reaction decreases the effectiveness of soap.
The molarity of KOH is 0.1055 M
<u><em> calculation</em></u>
Step 1: write the equation for reaction between H₂C₂O₄.2H₂O and KOH
H₂C₂O₄.2H₂O + 2 KOH → K₂C₂O₄ +4 H₂O
step 2: find the moles of H₂C₂O₄.2H₂O
moles = mass÷ molar mass
from periodic table the molar mass H₂C₂O₄.2H₂O= (1 x2) +(12 x2) +(16 x4) + 2(18)=126 g/mol
= 0.2000 g ÷ 126 g/mol =0.00159 moles
step 3: use the mole ratio to calculate the moles of KOH
H₂C₂O₄.2H₂O : KOH is 1:2
therefore the moles of KOH =0.00159 x 2 = 0.00318 moles
step 4: find molarity of KOH
molarity = moles/volume in liters
volume in liters = 30.12/1000=0.03012 L
molarity is therefore = 0.00318/0.03012 =0.1055 M