The Force of Static Friction<span> keeps a stationary object at rest! Once the Force of</span>Static Friction<span> is overcome, the Force of </span>Kinetic Friction<span> is what slows down a moving object.</span>
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, from the completed question, determine the distance (in meters) the horse covered in the first ten seconds of it's gallop and apply the formula below.
Average velocity = distance (in meters) ÷ time (in seconds as provided in this question)
The unit for velocity (to be used here) is m/s or ms⁻¹
Answer:
The inventors claim is not real
a) No the the freezer cannot operate in such conditions
Explanation:
From the question we are told that
The power input is 
The rate of heat transfer 
The temperature of the freezer content is 
The ambient temperature is 
Generally the coefficient of performance of a refrigerator at idea conditions is mathematically represented as

substituting values


Generally the coefficient of performance of a refrigerator at real conditions is mathematically represented as

substituting values


Now given that the COP of an ideal refrigerator is less that that of a real refrigerator then the claims of the inventor is rejected
This is because the there are loss in the real refrigerator cycle that are suppose to reduce the COP compared to an ideal refrigerator cycle where there no loss that will reduce the COP
Answer:
conduction,convection,radiation
Answer:
The output power is 2 kW
Explanation:
It is given that,
Number of turns in primary coil, 
Number of turns in secondary coil, 
Voltage of primary coil, 
Current drawn from secondary coil, 
We need to find the power output. It is equal to the product of voltage and current. Firstly, we will find the voltage of secondary coil as :



So, the power output is :



or

So, the output power is 2 kW. Hence, this is the required solution.