1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iogann1982 [59]
2 years ago
11

An inventor claims to have developed a food freezer that, in steady-state conditions, requires a power input of 0.25 kW to extra

ct energy by heat transfer at a rate of 3050 J/s from the freezer contents, which are at a temperature of 270 K. Determine if this claim is real considering an ambient temperature of 293 K. (a) Can the freezer operation in such conditions
Physics
1 answer:
WARRIOR [948]2 years ago
4 0

Answer:

The inventors  claim is not real

a)  No the the freezer cannot operate in such conditions

Explanation:

From the question we are told that

     The  power input is  P_i  = 0.25 kW  =  0.25 *10^{3} \ W

      The  rate of heat transfer J  =  3050 J/s

       The temperature of the freezer content is T = 270 \ K

       The  ambient temperature is  T_a  =  293 \ K

Generally the coefficient of performance of a refrigerator at idea conditions is mathematically represented as

      COP  =  \frac{T }{Ta - T}

substituting values

     COP  =  \frac{270 }{293 - 270}

     COP  =11.7

Generally the coefficient of performance of a refrigerator at real conditions is mathematically represented as

       COP  =  \frac{J}{P_i}

substituting values

       COP  =  \frac{3050}{0.25 *10^{3}}

       COP  = 12.2

Now given that the COP  of an ideal refrigerator is  less that that of a real refrigerator then the claims of the inventor is rejected

This is because the there are loss in the real refrigerator cycle that are suppose to reduce the COP compared to an ideal refrigerator cycle where there no loss that will reduce the COP

You might be interested in
Convert 68852 millijoules into Calories. (Write your answer in the decimal form. Do not include units in your answer).
alex41 [277]

Answer: 68852 millijoules = 16.46 calories

Explanation:

Given;

Convert 68852 millijoules to calories.

1 calorie = 4.184J = 4184millijoules

Therefore,

1 millijoule = 1/4184 calories

68852 millijoule = 68852 × 1/4184 calories

= 16.46 calories

6 0
2 years ago
A vertical spring (ignore its mass), whose spring constant is 1070 N/m, is attached to a table and is compressed 0.100 m.
harina [27]

I can not solve the problem if I do not have the mass.

3 0
2 years ago
Which statement is true for a sound wave entering an area of warmer air
Reika [66]
That waves travel faster than the wave lenght!
8 0
3 years ago
Read 2 more answers
The International Space Station (ISS) orbits Earth at an altitude of 4.08 × 105 m above the surface of the planet. At what veloc
alukav5142 [94]

This question involves the concepts of orbital velocity and orbital radius.

The orbital velocity of ISS must be "7660.25 m/s".

The orbital velocity of the ISS can be given by the following formula:

v=\sqrt{\frac{GM}{R}}

where,

v = orbital velocity = ?

G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²

M = Mass of Earth = 5.97 x 10²⁴ kg

R = orbital radius = radius of earth + altitude = 63.78 x 10⁵ m + 4.08 x 10⁵ m

R = 67.86 x 10⁵ m

Therefore,

v=\sqrt{\frac{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(5.97\ x\ 10^{24}\ kg)}{67.86\ x\ 10^5\ m}}

<u>v = 7660.25 m/s</u>

Learn more about orbital velocity here:

brainly.com/question/541239

3 0
2 years ago
A skater extends her arms, holding a 2 kg mass in each hand. She is rotating about a vertical axis at a given rate. She brings h
Usimov [2.4K]

Explanation:

It is known that relation between torque and angular acceleration is as follows.

                    \tau = I \times \alpha

and,       I = \sum mr^{2}

So,      I_{1} = 2 kg \times (1 m)^{2} + 2 kg \times (1 m)^{2}

                       = 4 kg m^{2}

      \tau_{1} = 4 kg m^{2} \times \alpha_{1}

     \tau_{2} = I_{2} \alpha_{2}

So,      I_{2} = 2 kg \times (0.5 m)^{2} + 2 kg \times (0.5 m)^{2}

                     = 1 kg m^{2}

 as \tau_{2} = I_{2} \alpha_{2}

                   = 1 kg m^{2} \times \alpha_{2}        

Hence,     \tau_{1} = \tau_{2}

                  4 \alpha_{1} = \alpha_{2}

            \alpha_{1} = \frac{1}{4} \alpha_{2}

Thus, we can conclude that the new rotation is \frac{1}{4} times that of the first rotation rate.

8 0
3 years ago
Other questions:
  • 20pts! What are the thin fibers of the human nervous system called?
    7·2 answers
  • which object has the most gravitational potential energy? A. an 8 kg book at a height of 3m B. an 5 kg book at a height of 3 m C
    7·2 answers
  • In order for work to be done, what three things are necessary?
    14·2 answers
  • Metal shavings between two magnets that are not touching show the?
    6·1 answer
  • One way to search for planets around other stars is the doppler technique. another way uses transits of planets around other sta
    5·1 answer
  • when a body of mass 0.25kg is acted upon by a force, the velocity changes from 5m/s to 7.5m/s. Calculate the work done by the fo
    5·1 answer
  • Define constant speed
    7·2 answers
  • This type of mutation occurs when one or more base pairs are added to the gene sequence.
    7·1 answer
  • Margaret walks to the store using the following path 0.630 mi west, 0.370 mi north, 0.180 mi east. assume north to be along the
    6·1 answer
  • HELPPP PLEASE !!!!!!!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!