Answer:
27%
Explanation:
15.999 divided by 58.32 = .27433128
Move the decimal place over 2 places.
27%
Answer: The current must be equal to
amps, or ~0.9574 amps.
Explanation:
You can find the current in amperes using ohms and watts from this formula:

Where P represents power in watts, R represents resistance in ohms, and I represents current in amperes.
You can then substitute 60 and 55 into the equation to find I:

Then, simplify the denominator:

Rationalize the denominator:

Simplify the numerator by finding its factors:

The current must be equal to
amps, or ~0.9574 amps.
The correct answer to this question is C - Gravity is a force. Gravity
is also an example of a universal law. Well, according to Isaac Newton,
anyway. According to Newton's Law of Universal Gravitation, 'every point
mass attracts every single point mass by a force pointing along the
line intersecting both paths.'
<span />
.Answer;
Using Fmax=qVB
F=(1.6*10^-19 C)(5.860*10^6 m/s)(1.38 T)
ANS=1.29*10^-12 N
2. Using Amax=Fmax/ m
Amax =(1.29*10^-12 N) / (1.67*10^-27 kg)
ANS=1.93*10^15 m/s^2*
3. No, the acceleration wouldn't be the same. Since The magnitude of the electron is equal to that of the proton, but the direction would be in the opposite direction and also Since an electron has a smaller mass than a proton
If they are both traveling with the same speed that means that they will reach other in the middle of the line initially between them. In other word, each will have to travel the same amount before they reach other.
Now you can calculate the time it takes for only one locomotive to travel half of the total distance between them, and that time is equal to the time you are looking for.
Use
t = S1/2 / v
where t-time, S-distance traveled , v-velocity