Answer:
Q= 4.6 × 10⁻³ m³/s
actual velocity will be equal to 8.39 m/s
Explanation:
density of fluid = 900 kg/m³
d₁ = 0.025 m
d₂ = 0.05 m
Δ P = -40 k N/m²
C v = 0.89
using energy equation

under ideal condition v₁² = 0
v₂² = 88.88
v₂ = 9.43 m/s
hence discharge at downstream will be
Q = Av
Q =
Q =
Q= 4.6 × 10⁻³ m³/s
we know that

hence , actual velocity will be equal to 8.39 m/s
Los MOSFET de potencia son dispositivos de conducción unipolar. En ellos, los niveles de corriente conducida no están asociados al aumento de la concentración de portadores minoritarios, que luego son difíciles de eliminar para que el dispositivo deje de conducir.
Answer:
nmuda mudaf A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Answer:
please help you are not the intended recipient
This question is incomplete, the complete question is;
Determine the design moment strength (ϕMn) for a W21x73 steel beam with a simple span of 18 ft when lateral bracing for the compression flange is provided at the ends only (i.e., Lb = 18 ft). Report the result in kip-ft.
Use Fy=50 ksi and assume Cb=1.0 (if needed).
Answer: the design moment strength for the W21x73 steel beam is 566.25 f-ft
Explanation:
Given that;
section W 21 x 73 steel beam;
now from the steel table table for this section;
Zx = Sx = 151 in³
also given that; fy = 50 ksi and Cb = 1.0
QMn = 0.9 × Fy × Zx
so we substitute
QMn = 0.9 × 50 × 151
QMn = 6795 k-inch
we know that;
12inch equals 1 foot
so
QMn = 6795 k-inch / 12
QMn = 566.25 f-ft
Therefore the design moment strength for the W21x73 steel beam is 566.25 f-ft