1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GrogVix [38]
3 years ago
9

Which of the following examples illustrates static friction?

Physics
1 answer:
vivado [14]3 years ago
6 0

Answer:

A box sits stationary  on a ramp

Explanation:

Static friction is a force which keeps an object at rest as it is in the case of the box. It has to be overcome for the object to be set into motion.

Static force of friction is calculated as follows:

F= μη

F is static force of friction.

μ is the coefficient of static friction.

η is the normal force.

You might be interested in
Witch of the following is not an appropriate unit for power
erica [24]

There are no appropriate units for power on the list you provided

6 0
3 years ago
How is the pool play helping Adam lift the object
lorasvet [3.4K]
Adam<span> applies and input force to the pulley as he pulls down to </span>lift the object<span>. As he does this, </span>Adam<span>wonders about how the pulley is </span>helping<span> him

</span>
8 0
3 years ago
A football is kicked from the ground with a velocity of 38m/s at an angle of 40 degrees and eventually lands at the same height.
Anastasy [175]

Initially, the velocity vector is \langle 38cos(40^{\circ}),38sin(40^{\circ}) \rangle=\langle 29.110, 24.426 \rangle. At the same height, the x-value of the vector will be the same, and the y-value will be opposite (assuming no air resistance). Assuming perfect reflection off the ground, the velocity vector is the same. After 0.2 seconds at 9.8 seconds, the y-value has decreased by 4.9(0.2)^2, so the velocity is \langle 29.110, 24.426-0.196 \rangle = \langle 29.110, 24.23 \rangle.

Converting back to direction and magnitude, we get \langle r,\theta \rangle=\langle \sqrt{29.11^2+24.23^2},tan^{-1}(\frac{29.11}{24.23}) \rangle = \langle 37.87,50.2^{\circ}\rangle

4 0
3 years ago
State the laws of vibration of a stringed Instrument​
olchik [2.2K]
If the length and linear density are constant, the frequency is directly proportional to the square root of the tension.
7 0
3 years ago
The initial kinetic energy imparted to a 0.25 kg bullet is 1066 J. The acceleration of gravity is 9.81 m/s 2 . Neglecting air re
lubasha [3.4K]

Answer:

The range of the bullet is 0.435 kilometers.

Explanation:

According to the problem, maximum height is equal to the range of the bullet. That is:

\Delta x = \Delta y

Where:

\Delta x - Range of the bullet, measured in meters.

\Delta y - Maximum height of the bullet, measured in meters.

By the Principle of Energy Conservation, gravitational potential energy reaches its maximum at the expense of the initial kinetic energy. That is to say:

K_{1} = U_{2}

Where:

K_{1} - Kinetic energy at point 1, measured in joules.

U_{1} - Gravitational potential energy at point 2, measured in joules, and:

U_{2} = m\cdot g \cdot \Delta y

Where:

m - Mass of the bullet, measured in kilograms.

g - Gravitational constant, measured in meters per square second.

The maximum height is now cleared:

K_{1} = m\cdot g \cdot \Delta y

\Delta y = \frac{K_{1}}{m\cdot g}

If K_{1} = 1066\,J, m = 0.25\,kg and g = 9.81\,\frac{m}{s^{2}}, the maximum height is now computed:

\Delta y = \frac{1066\,J}{(0.25\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}

\Delta y = 434.791\,m

\Delta y = 0.435\,km

Lastly, the range of the bullet is 0.435 kilometers.

3 0
3 years ago
Other questions:
  • 60 kilometers in 4 hours, what is the average speed?​
    9·1 answer
  • A ball is dropped from rest from the top of a building and strikes the ground with a speed . from ground level, a second ball is
    9·1 answer
  • How does a planet’s size affect the length of a rotation of that planet
    6·1 answer
  • PLEASE SAY IM RIGHT AGAIN?
    12·1 answer
  • For a medium to transmit a wave, the medium must _____.
    8·1 answer
  • A hockey puck on a frozen pond with an initial speed of 13.7 m/s stops after sliding a distance of 216.9 m. Calculate the averag
    6·1 answer
  • You stretch a spring ball system 0.552 m away from its equilibrium point and watch it oscillate. You find that the system's angu
    12·1 answer
  • Which direction will thermal energy flow if you pick up a snowball with your bare hand? Thermal energy will flow from the snowba
    13·2 answers
  • Your ear is capable of differentiating sounds that arrive at each ear just 0.34 ms apart, which is useful in determining where l
    12·1 answer
  • A car moving at 60 mph slams on its brakes to stop before hitting a deer. Another identical car traveling at 60 mph slows to a s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!