Answer:
Force F = 69.35 N
Explanation:
given data
Ball Initial speed u = 0
Ball Final speed v = 42.1 m/s
average power generate = 2920 W
solution
Power generate is express as
P=
..............1
here W is work done and t is time
and work w = F × d
so
P=
and we know speed v =
so here
Power P = F × v
put here value and we get force
Force F =
Force F = 69.35 N
Answer:
4.has gained two electrons
Explanation:
There exist electrovalent bonding the compound MgS . In electrovalent bonding, there is a transfer of electrons from the metal to non-metal.
Magnesium atom has an atomic number 12 and its electron configuration is 2,8,2
Sulfur atom , a non-metal has atomic number of 16 and its electron configuration = 2,8,6
This means that magnesium as a metal needs to loose two electrons from its valence shell to attain its stable structure.Also sulfur requires two more electron to achieve its octet structure.
Hence a transfer of electrons will take place from magnesium atom to sulfur atom, sulfur gaining two electrons.
Answer:
resistance of a conductor increases
Explanation:
The resistance of conductors is directly proportional to the temperature of the conductor. This implies that when the temperature of the conductor is increased, the resistance of the conductor increases likewise.
This is applied in the resistance thermometer. Resistance thermometers are useful for accurate temperature measurements at very high or very low temperatures.
Answer: Part(a)=0.041 secs, Part(b)=0.041 secs
Explanation: Firstly we assume that only the gravitational acceleration is acting on the basket ball player i.e. there is no air friction
now we know that
a=-9.81 m/s^2 ( negative because it is pulling the player downwards)
we also know that
s=76 cm= 0.76 m ( maximum s)
using kinetic equation

where v is final velocity which is zero at max height and u is it initial
hence


now we can find time in the 15 cm ascent


using quadratic formula

t=0.0409 sec
the answer for the part b will be the same
To find the answer for the part b we can find the velocity at 15 cm height similarly using

where s=0.76-0.15
as the player has traveled the above distance to reach 15cm to the bottom


when the player reaches the bottom it has the same velocity with which it started which is 3.861
hence the time required to reach the bottom 15cm is

t=0.0409
The moment of inertia of the flywheel is 2.63 kg-
It is given that,
The maximum energy stored on the flywheel is given as
E=3.7MJ= 3.7×
J
Angular velocity of the flywheel is 16000
= 1675.51
So to find the moment of inertia of the flywheel. The energy of a flywheel in rotational kinematics is given by :
E = 

By rearranging the equation:
I = 
I = 2.63 kg-
Thus the moment of inertia of the flywheel is 2.63 kg-
.
Learn more about moment of inertia here;
brainly.com/question/13449336
#SPJ4