<span>A full valence electron shell.</span>
Answer:
- <em><u>Measurement of the amount of variation of the species in a given area. </u></em>
Explanation:
<em>Bio</em> preffix means life. Thus, literally, biodiversity means how diverse is the life. This is, how many different organisms an ecosystem or biome has.
Thus, biodiverstiy, although more complex than just that, is a measure of the number of species that live in a region.
The biome with most species than any other, this is the biome with the greatest biodiversity, is the tropical rainforest biome, which are located near the equator. As you can imagine, a large number of different plants, animals, and microorganisms live in these forests, making them the regions with greatest biodiversity on the planet.
Answer:
ΔH = -470.4kJ
Explanation:
It is possible to sum 2 or more reactions to obtain the ΔH of the reaction you want to study (Hess's law). Using the reactions:
1. CaC2(s) + 2H2O(l) → C2H2(g) + Ca(OH)2(s)ΔH = −414kJ
2. 6C2H2(g) + 3CO2(g) + 4H2O(g) → 5CH2CHCO2H(g)ΔH = 132kJ
6 times the reaction 1.
6CaC2(s) + 12H2O(l) → 6C2H2(g) + 6Ca(OH)2(s)ΔH = −414kJ*6 = -2484kJ
This reaction + 2:
6CaC2(s) + 3CO2(g) + 16H2O(l) → + 6Ca(OH)2(s) + 5CH2CHCO2H(g) ΔH = -2484kJ + 132kJ = -2352kJ
As we want to calculate the net change enthalpy in the formation of just 1 mole of acrylic acid we need to divide this last reaction in 5:
6/5CaC2(s) + 3/5CO2(g) + 16/5H2O(l) → + 6/5Ca(OH)2(s) + CH2CHCO2H(g) ΔH = -2352kJ / 5
<h3>ΔH = -470.4kJ</h3>
Answer: Gas
Explanation:
since the gas molecules arent being forcefully bonded together like a solid would be, and liquids tend to have lower kinetic energy than solids
Answer:
1.1 × 10² g
Explanation:
First, we will convert 1.0 L to cubic centimeters.
1.0 L × (10³ mL/1 L) × (1 cm³/ 1 mL) = 1.0 × 10³ cm³
The density of water is 1.0 g/cm³. The mass corresponding to 1.0 × 10³ cm³ is:
1.0 × 10³ cm³ × (1.0 g/cm³) = 1.0 × 10³ g
1 mole of water (H₂O) has a mass of 18 g, consisting of 2 g of H and 16 g of O. The mass of Hydrogen in 1.0 × 10³ g of water is:
1.0 × 10³ g H₂O × (2 g H/18 g H₂O) = 1.1 × 10² g