Answer:
The new temperature is 373 K
Explanation:
Step 1: Data given
Volume air = 5000 mL = 5.0 L
Temperature = 223K
New volume = 8.36 L
Step 2: Calculate the new temperature
V1/T1 = V2/T2
⇒V1 = the initial volume = 5.0 L
⇒T1 = the initial temperature = 223 K
⇒V2 = the new volume = 8.36 L
⇒T2 = the new temperature
5.0/223 = 8.36 /T2
T2 = 373 K
The new temperature is 373 K
Answer:
2 KClO3 (s) = 2 KCl (s) + 3 O2 (g)
2.5 g x g
Explanation:
x g O2 = 2.5 g KClO3 x (1 mol KClO3) x (3 mol O2) x (32 g O2) = 0.98 g O2
(122.5 g KClO3) (2 mol KClO3) (1 mol O2)
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
2.5 g x g
x g KCl = 2.5 g KClO3 x (1 mol KClO3) x (2 mol KClO3) x (74.5 g KCl) = 1.52 g KCl
(122.5 g KClO3) (2 mol KClO3) (1 mol KCl)
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
x mol 10 mol
x mol KClO3 = 10 mol O2 x (2 mol KClO3) = 6.7 mol KClO3
(3 mol O2)
Answer:
It is both accurate and precise.
Explanation:
Precision and accuracy are two different terms used to describe data or measurements. Accuracy refers to how close a set of measurements/experimental values is to an accepted or correct value while Precision refers to how close a series of experimental values are to one another.
In the given set of data in the question below, the Correct Value is 59.2 while the experimental values are as follows;
Trial 1: 58.7
Trial 2: 59.3
Trial 3: 60.0
Trial 4: 58.9
Trial 5: 59.2
Based on comparison, it can be observed that these experimental values are close to the correct value (59.2). Hence, they are said to be ACCURATE. Also, the experimental values are close to one another, hence, they are said to be PRECISE.
Therefore, the data set is both accurate and precise.
Answer:
Here's what I find
Explanation:
Heisenberg observed that if we want to locate a moving electron, we must bounce photons off it.
However, this makes it recoil. By the time the photon returns to our eye, the electron will no longer be in the same place.
He concluded that there is a limit to the precision with which we can simultaneously measure the position and speed (momentum) of a particle.
The more precisely we know the electron's speed, the less precisely we know its position and vice versa.
The uncertainty in the product of the two values cannot be less than a fixed small number.