The Kinetic energy would be 1/2IL².
<h3>What is
Rotational Kinetic energy ?</h3>
- Rotational energy also known as angular kinetic energy is defined as: The kinetic energy due to the rotation of an object and is part of its total kinetic energy. Rotational kinetic energy is directly proportional to the rotational inertia and the square of the magnitude of the angular velocity.
As we know linear Kinetic energy = 1/2mv²
where m= mass and v= velocity.
Similarly rotational kinetic energy is given by = 1/2IL²
where I- moment of inertia and L=angular momentum.
To know more about the Kinetic energy , visit:
brainly.com/question/29807121
#SPJ4
Answer:
39.2m/s
Explanation:
The potential energy the book has right before it falls is equal to the kinetic energy in falling.
PE = KE
mgh = (1/2)mv
2gh=v
v=(2)(9.81)(2)
v=39.24m/s
Answer:
The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
Explanation:
We have expression for sound intensity level (SIL),

Here we need to find the intensity of sound (I).

Substituting
L = 67 dB and I₀ = 10⁻¹² W/m² in the equation

The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.
This definition is described in the following equation as,

Where,
permeability of free space
Number of turns in solenoid 1
Number of turns in solenoid 2
Cross sectional area of solenoid
l = Length of the solenoid
Part A )
Our values are given as,





Substituting,



PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.
First establish the summation of the forces acting int the
ladder
Forces in the x direction Fx = 0 = force of friction (Ff) –
normal force in the wall(n2)
Forces in the y direction Fy =0 = normal force in floor (n1)
– (12*9.81) –( 60*9.81)
So n1 = 706.32 N
Since Ff = un1 = 0.28*706.32 = 197,77 N = n2
Torque balance along the bottom of the ladder = 0 = n2(4 m) –
(12*9.81*2.5 m) – (60*9.81 *x m)
X = 0.844 m
5/ 3 = h/ 0.844
H = 1.4 m can the 60 kg person climb berfore the ladder will
slip