1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
2 years ago
6

A fluid flows steadily through a pipe with a uniform cross sectional area. The density of the fluid decreases to half its initia

l value as it flows through the pipe. The correct statement about the average velocity V is:_______
flow
rho1 → rho2= rho1
V1 → V2= ?

a. V2 equals 2V1.
b. V2 equals V1/2.
c. V2 equals V1.
d. V2 equals V1/4.
e. V2 equals 4V1.
Engineering
1 answer:
Vikentia [17]2 years ago
5 0

Answer:

c. V2 equals V1

Explanation:

We can answer this question by using the continuity equation, which states that:

A_1 v_1 = A_2 v_2 (1)

where

A1 is the cross-sectional area in the first section of the pipe

A2 is the cross-sectional area in the second section of the pipe

v1 is the velocity of the fluid in the first section of the pipe

v2 is the velocity of the fluid in the second section of the pipe

In this problem, we are told that the pipe has a uniform cross sectional area, so:

A1 = A2

As a consequence, according to eq.(1), this means that

v1 = v2

so, the velocity of the fluid in the pipe does not change.

You might be interested in
Define a function pyramid_volume with parameters base_length, base_width, and pyramid_height, that returns the volume of a pyram
Maslowich

Hi, you haven't provided the programing language in which you need the code, I'll just explain how to do it using Python, and you can apply a similar method for any programming language.

Answer:

1. def pyramid_volume(base_length, base_width, pyramid_height):

2.     volume = base_length*base_width*pyramid_height/3

3.     return(volume)

Explanation step by step:

  1. In the first line of code, we define the function pyramid_volume and it's input parameters
  2. In the second line, we perform operations with the input values to get the volume of the pyramid with a rectangular base, the formula is V = l*w*h/3
  3. In the last line of code, we return the volume  

In the image below you can see the result of calling the function with input 4.5, 2.1, 3.0.

5 0
3 years ago
In order to fill a tank of 1000 liter volume to a pressure of 10 atm at 298K, an 11.5Kg of the gas is required. How many moles o
lesya [120]

Answer:

The molecular weight will be "28.12 g/mol".

Explanation:

The given values are:

Pressure,

P = 10 atm

  = 10\times 101325 \ Pa

  = 1013250 \ Pa

Temperature,

T = 298 K

Mass,

m = 11.5 Kg

Volume,

V = 1000 r

   = 1 \ m^3

R = 8.3145 J/mol K

Now,

By using the ideal gas law, we get

⇒ PV=nRT

o,

⇒ n=\frac{PV}{RT}

By substituting the values, we get

       =\frac{1013250\times 1}{8.3145\times 298}

       =408.94 \ moles

As we know,

⇒ Moles(n)=\frac{Mass(m)}{Molecular \ weight(MW)}

or,

⇒        MW=\frac{m}{n}

                   =\frac{11.5}{408.94}

                   =0.02812 \ Kg/mol

                   =28.12 \ g/mol

3 0
2 years ago
QUESTION:
pentagon [3]
74 cycles it’s what u need
7 0
2 years ago
A piece of aluminum wire is 500 ft long and has a diameter of 0.03 inches. What is the resistance of the piece of wire?​
dexar [7]

Answer:

8.85 Ω

Explanation:

Resistance of a wire is:

R = ρL/A

where ρ is resistivity of the material,

L is the length of the wire,

and A is the cross sectional area.

For a round wire, A = πr² = ¼πd².

For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.

Given L = 500 ft and d = 0.03 in = 0.0025 ft:

R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)

R = 8.85 Ω

5 0
3 years ago
The fracture toughness of a stainless steel is 137 MPa*m12. What is the tensile impact load sustainable before fracture that a r
Charra [1.4K]

Answer:

7.7 kN

Explanation:

The capacity of a material having a crack to withstand fracture is referred to as fracture toughness.

It can be expressed by using the formula:

K = \sigma Y \sqrt{\pi a}

where;

fracture toughness K = 137 MPam^{1/2}

geometry factor Y = 1

applied stress \sigma = ???

crack length a = 2mm = 0.002

∴

137 =\sigma \times 1  \sqrt{ \pi \times 0.002 }

137 =\sigma \times 0.07926

\dfrac{137}{0.07926} =\sigma

\sigma = 1728.489 MPa

Now, the tensile impact obtained is:

\sigma = \dfrac{P}{A}

P = A × σ

P = 1728.289 × 4.5

P = 7777.30 N

P = 7.7 kN

7 0
3 years ago
Other questions:
  • Pine Valley Furniture wants to use Internet systems to provide value to its customers and staff. There are many software technol
    5·1 answer
  • A circular ceramic plate that can be modeled as a blackbody is being heated by an electrical heater. The plate is 30 cm in diame
    15·1 answer
  • How many types of engineering specialist are there?
    14·1 answer
  • The themes around which social sciences texts are organized boost understanding by
    11·1 answer
  • Define the Artist class in Artist.py with a constructor to initialize an artist's information. The constructor should by default
    7·1 answer
  • E xercise 17.1.2: For each of the transactions of Exercise 17.1.1, add the read- and write-actions to the computation and show t
    12·1 answer
  • A series circuit has 4 identical lamps. The potential difference of the energy source is 60V. The total resistance of the lamps
    15·1 answer
  • Introduce JTA and JT
    8·1 answer
  • In-------process the hot drawn bar or rod is pulled through the die.
    7·1 answer
  • Which of following is not malicious ?<br> Worm<br> Trogan Horse<br> Driver<br> Virus
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!