Answer:
Check the explanation
Explanation:
Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in

1x0.723x
=3x0.780x
⇒
= 426.4 °K
The initail volumes of the gases can be determined by the ideal gas equation of state,
=
= 0.201
The equilibrium pressure of the gases can also be obtained by the ideal gas equation

= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4
(0.201+1.275)
= 246.67 KPa = 2.47 bar
Answer:
c. an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Explanation:
Conduction refers to the transfer of thermal energy or electric charge as a result of the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
In the process of heat conduction, thermal energy is usually transferred from fast moving particles to slow moving particles during the collision of these particles. Also, thermal energy is typically transferred between objects that has different degrees of temperature and materials (particles) that are directly in contact with each other but differ in their ability to accept or give up electrons.
Any material or object that allow the conduction (transfer) of electric charge or thermal energy is generally referred to as a conductor. Conductors include metal, steel, aluminum, copper, frying pan, pot, spoon etc.
Hence, the difference between an initial condition and a boundary condition for conduction in a solid is that an initial condition specifies the temperature at the start of the problem and a boundary condition provides information about temperatures on the boundaries.
Answer:
88750 N
Explanation:
given data:
plastic deformation σy=266 MPa=266*10^6 N/m^2
cross-sectional area Ao=333 mm^2=333*10^-6 m^2
solution:
To determine the maximum load that can be applied without
plastic deformation (Fy).
Fy=σy*Ao
=88750 N
Answer:
Not knowing the units the tolerance is 0.02. I would presume mm but hopefully your question has more detail.
Explanation:
The tolerance is the portion after the main dimension (+/- 0.02). In our case we have bilateral tolerance since there is tolerance in both directions (positive and negative). If you were building a part the acceptable range would be 2.98 to 3.02 based on the tolerance provided.
Answer:3.47 m
Explanation:
Given
Temperature(T)=300 K
velocity(v)=1.5 m/s
At 300 K


And reynold's number is given by



x=3.47 m