The answer is: K is more reactive than Ca because K has to lose only one electron to complete its outermost shell.
Potassium is a chemical element with atomic number 19 (number of electrons is 19).
Electron configuration of potassium is: ₁₉K 1s²2s²2p⁶3s²3p⁶4s¹.
Potassium is the alkali metal and has a single valence electron in the outer electron shell.
Periodic law is the arrangement of the elements in order of increasing atomic number.
For example all alkaline metals (I group of periodic table, Na, K, Cs...) loose one electron in chemical reaction and react vigorously with water.
Reactivity series is an empirical progression of a series of metals, arranged by their reactivity from highest to lowest (alkaline metals have highest reactivity and Noble metals lowest reactivity).
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Alkaline metals (far left in main group) have lowest ionizations energy and easy remove valence electrons (one electron, earth alkaline metals (right next to alkaline metals) have higher ionization energy than alkaline metals, because they have two valence electrons.
Reorder 4Fe and 3O2.
3O2 + 4Fe
O,P,Ge ranked from atomic radius
Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
Answer:
When salt is mixed with water, the salt dissolves because the covalent bonds of water are stronger than the ionic bonds in the salt molecules. ... Water molecules pull the sodium and chloride ions apart, breaking the ionic bond that held them together.
Explanation: