Answer: At 34°c
Explanation:
Using The Arrhenius Equation:
k = Ae − Ea/RT
k represents rate constant
A represents frequency factor and is constant
R represents gas constant which is = 8.31J/K/mol
Ea represents the activation energy
T represents the absolute temperature.
By taking the natural log of both sides,
ln k = ln A- Ea/RT
Reactions at temperatures T1 and T2 can be written as;
ln k1= ln A− Ea/RT1
ln k2= ln A− Ea/RT2
Therefore,
ln(k1/k2) = −Ea/RT1 + Ea/RT2
Since k2=2k1 this becomes:
ln(1/2) = Ea/R*[1/T2 − 1/T1]
Theefore,
-0.693 = 37.2 x 10^3/8.31 * [ 1/T2 - 1/293]
1/T2 - 1/293 = -1.55 x 10^-4
1/T2 = -1.55 x 10^-4 + 34.13x 10^-4
1/T2 = 32.58 x 10^-4
Therefore T2 = 307K
T2 = 307 - 273 = 34 °c
Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
Rotation of the Earth contributes to the idea of the Sun setting and rising. The orbit of the Earth around the Sun results in the changing of seasons.
Answer:
New moment of inertia will be
Explanation:
It is given initially angular velocity 
Moment of inertia 
Angular momentum is equal to 
Now angular velocity is decreases to 
As we know that angular momentum is conserved
So 

So new moment of inertia will be 