The pH of a substance can only be determined when it is
a) dried in a powder
b) frozen
c) dissolved in water
d) heated
It’s frozen
B
Explanation:
Moles of metal,
=
4.86
⋅
g
24.305
⋅
g
⋅
m
o
l
−
1
=
0.200
m
o
l
.
Moles of
H
C
l
=
100
⋅
c
m
−
3
×
2.00
⋅
m
o
l
⋅
d
m
−
3
=
0.200
m
o
l
Clearly, the acid is in deficiency ; i.e. it is the limiting reagent, because the equation above specifies that that 2 equiv of HCl are required for each equiv of metal.
So if
0.200
m
o
l
acid react, then (by the stoichiometry), 1/2 this quantity, i.e.
0.100
m
o
l
of dihydrogen will evolve.
So,
0.100
m
o
l
dihydrogen are evolved; this has a mass of
0.100
⋅
m
o
l
×
2.00
⋅
g
⋅
m
o
l
−
1
=
?
?
g
.
If 1 mol dihydrogen gas occupies
24.5
d
m
3
at room temperature and pressure, what will be the VOLUME of gas evolved?
Answer:
The ΔH is 5.5 kJ/mol and the reaction is endothermic.
Explanation:
To calculate the ∆H (heat of reaction) of the combustion reaction, that is, the heat that accompanies the entire reaction, you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient ( number of molecules of each compound participating in the reaction) and finally subtract them:
Combustion enthalpy = ΔH = ∑H products - ∑Hreactants
In this case:
ΔH = 15.7 kJ/mol - 10.2 kJ/mol= 5.5 kJ/mol
An endothermic reaction is one whose enthalpy value is positive, that is, the system absorbs heat from the environment (ΔH> 0).
<u><em>The ΔH is 5.5 kJ/mol and the reaction is endothermic.</em></u>
Answer:
I think the answer is Prokaryote and Eukaryote
Explanation: