If 24 marks is 60 %, then full marks is 40
<em><u>Solution:</u></em>
Given that 24 marks is 60 %
We are asked to find the full marks
Let the full marks be "x"
So out of "x" marks, he has got 24 marks
Therefore,
60 % of full marks = 24
60 % of x = 24

Therefore, full marks is 40
<h3><u>Method 2:</u></h3>
If 60 % is 24, then we have to find what is 100 %
60 % = 24
100 % = x
This forms a proportion, So we can solve the sum by cross multiplying

Thus full marks is 40
Answer:
x=3/4y+13 y=4/3x-4
Step-by-step explanation:
Answer:
Step-by-step explanation:
Let the numbers be y, y+2, y+4
3(y+2)=153
3y+6=153
3y=153-6
3y=147
y=49
y+2=51
y+4=53
Answers
b = 2.77 m
A = 43.0°
C = 111.1°
cosine law to find b

b = 2.7708\ m
Find angle A with sine law
![\displaystyle \frac{\sin A}{a} = \frac{\sin B}{b} \\ \\ \sin A = \frac{a \sin B}{b} \\ \\ A = \sin^{-1} \left[ \frac{a \sin B}{b} \right] \\ \\ A = \sin^{-1} \left[ \frac{4.33 \sin 25.9}{2.7708} \right] \\ \\ A = 43.0467020](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%3D%20%5Cfrac%7B%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0A%5Csin%20A%20%3D%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%20%5Cright%5D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B4.33%20%5Csin%2025.9%7D%7B2.7708%7D%20%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AA%20%3D%2043.0467020)
Find C with angles in triangle sum to 180
A + B + C = 180
C = 180 - A - B
C = 180 - 43.0467020 - 25.9
C = 111.1