Answer:
a food pyramid.
Explanation:
the food pyramid shows how autotrophs are at the bottom and how the top predators are at the top, in this case the eagle.
Answer:
Explanation:
The result will be affected.
The mass of KHP weighed out was used to calculate the moles of KHP weighed out (moles = mass/molar mass).
Not all the sample is actually KHP if the KHP is a little moist, so when mass was used to determine the moles of KHP, a higher number of moles than what is actually present would be obtained (because some of that mass was not KHP but it was assumed to be so. Therefore, there is actually a less present number of moles than the certain number that was thought of.
During the titration, NaOH reacts in a 1:1 ratio with KHP. So it was determined that there was the same number of moles of NaOH was the volume used as there were KHP in the mass that was weighed out. Since there was an overestimation in the moles of KHP, then there also would be an overestimation in the number of moles of NaOH.
Thus, NaOH will appear at a higher concentration than it actually is.
2.1648 kg of CH4 will generate 119341 KJ of energy.
Explanation:
Write down the values given in the question
CH4(g) +2 O2 → CO2(g) +2 H20 (g)
ΔH1 = - 802 kJ
2 H2O(g)→2 H2O(I)
ΔH2= -88 kJ
The overall chemical reaction is
CH4 (g)+2 O2(g)→CO2(g)+2 H2O (I) ΔH2= -890 kJ
CH4 +2 O2 → CO2 +2 H20
(1mol)+(2mol)→(1mol+2mol)
Methane (CH4) = 16 gm/mol
oxygen (O2) =32 gm/mol
Here 1 mol CH4 ang 2mol of O2 gives 1mol of CO2 and 2 mol of 2 H2O
which generate 882 KJ /mol
Therefore to produce 119341 KJ of energy
119341/882 = 135.3 mol
to produce 119341 KJ of energy, 135.3 mol of CH4 and 270.6 mol of O2 will require
=135.3 *16
=2164.8 gm
=2.1648 kg of CH4
2.1648 kg of CH4 will generate 119341 KJ of energy
Answer:
2.173 moles of ethanol is presented in a 100.0g sample of ethanol .
Explanation:
The amount of substance that contains as many Particles as there are atoms in exactly 12g of carbon- '12 isotope is called 1 mole '= 46 u.
We use the following formula to calculate the number of atoms:
n (mol) = N(number of atoms) / NA
N(He) = n(mol) · NA
N(He) = 2,0 moles · 6.02·1023 = 12.04·1023 atoms