Answer:
It's obviously true
Explanation:
As we have evolved over the years we have become more advanced
Note that it says oxygen "gas"
So you need the atomic mass of oxygen gas
Look at your periodic table, you'll see 15.9994 under oxygen
Oxygen gas has a formula of O2 therefore,
(15.9994) times 2= Oxygen gas atomic mass=31.9988
Mol= Mass/Atomic Mass
=62.3 g/ 31.9988 g/mol = 1.95 mol
now look at the ratio of C2H6 and O2, notice there is an invisible number beside each of them, at that "invisible number" is =1
1 C2H6 + 1 O2 -> products
this means that for 1 mol of C2H6, 1 mol of O2 has to react with it
Thus as we have 1.95 moles of O2, we need 1.95 moles of C2H6
Answer:
The activation energy for the decomposition = 33813.28 J/mol
Explanation:
Using the expression,
Wherem
is the activation energy
R is Gas constant having value = 8.314 J / K mol
Thus, given that,
= ?
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (5 + 273.15) K = 278.15 K
T = (25 + 273.15) K = 298.15 K
So,




<u>The activation energy for the decomposition = 33813.28 J/mol</u>
Answer:
Aluminium oxide has higher melting point than aluminium chloride because there nay be some impurities in the oxide which affects the intermolecular force of attraction
Answer: Keq= [CO2]^6[H2O]^6/ [O2]^6
Explanation: