Answer:
ξ = 0.00845020162 V or 8.4 mV
Explanation:
Magnetic flux measures the total magnetic field that passes through a known area. Magnetic flux describe the effect of magnetic field in a given area. Mathematically,
magnetic flux (Ф) = BA cos ∅
where
A = test area
B = magnetic field
before the flip
Ф = Bπr²N
N = number of turn
magnitude of induced emf = N |ΔФ/Δt|
ξ = 2Nπr²B/dt
ξ = 2 × 22 × π × (1.02/2)² × 0.000047/0.2
ξ = 44 × π × 0.51² × 0.000047/0.2
ξ = 44 × π × 0.2601 × 0.000047/0.2
ξ = 0.0005378868 × 3.142/0.2
ξ = 0.00169004032/0.2
ξ = 0.00845020162 V or 8.4 mV
6 meters is left because you subtract 12 meters from 6
Answer:
v = 7.67 m/s
Explanation:
Given data:
horizontal distance 11.98 m
Acceleration due to gravity 9.8 m/s^2
Assuming initial velocity is zero
we know that

solving for t
we have

substituing all value for time t

t = 1.56 s
we know that speed is given as


v = 7.67 m/s
Answer:
A) 1.4167 × 10^(-11) F
B) r_a = 0.031 m
C) E = 3.181 × 10⁴ N/C
Explanation:
We are given;
Charge;Q = 3.40 nC = 3.4 × 10^(-9) C
Potential difference;V = 240 V
Inner radius of outer sphere;r_b = 4.1 cm = 0.041 m
A) The formula for capacitance is given by;
C = Q/V
C = (3.4 × 10^(-9))/240
C = 1.4167 × 10^(-11) F
B) To find the radius of the inner sphere,we will make use of the formula for capacitance of spherical coordinates.
C = (4πε_o)/(1/r_a - 1/r_b)
Rearranging, we have;
(1/r_a - 1/r_b) = (4πε_o)/C
ε_o is a constant with a value of 8.85 × 10^(−12) C²/N.m
Plugging in the relevant values, we have;
(1/r_a - 1/0.041) = (4π × 8.85 × 10^(−12) )/(1.4167 × 10^(-11))
(1/r_a) - 24.3902 = 7.8501
1/r_a = 7.8501 + 24.3902
1/r_a = 32.2403
r_a = 1/32.2403
r_a = 0.031 m
C) Formula for Electric field just outside the surface of the inner sphere is given by;
E = kQ/r_a²
Where k is a constant value of 8.99 × 10^(9) Nm²/C²
Thus;
E = (8.99 × 10^(9) × 3.4 × 10^(-9))/0.031²
E = 3.181 × 10⁴ N/C