-- Energy is never created or destroyed.
-- No energy is added to the pendulum during its swing.
-- If we ignore air resistance and friction, then no energy is lost
from the pendulum during its swing.
-- Therefore the total energy of the pendulum must be constant.
-- Any potential energy lost at any point in the swing
must show up as kinetic energy. If it had 484J at the top,
then it'll have 484J at the bottom.
Answer:
Explanation:
given
m= 17.5kg
F= 75N
d= 5.7m
∪=0.150
θ= 21°
a. W = Fcos θ × d
75cos21° ×5.7
=399.106J
b. normal force is zero. 0 Joules
cos 90°=0
Answer:
<h2>0.39m/s^2</h2>
Explanation:
Step one:
given data
mass m= 300kg
applied force F= 1000N
coefficient of friction μ= 0.3
Step two:
The net force Fn= applied force-friction force
Fn=F-F1
F1= limiting force
F1=μ*m*g
F1=0.3*300*9.81
F1=882.9N
the Net force= 1000-882.9
Fn=117.1N
Step three:
we know that
F=ma
Fnet=ma
a= Fnet/m
a=117.1/300
a=0.39m/s^2
I think it is a insulator because plastic is a poor conductor of heat