Answer:
Conversion factor;
Molar mass;
Avogadro's constant and molar mass
Explanation:
- Firstly, an intermediate step is to define the conversion factor that will be then used in a conversion technique called dimensional analysis in order to convert from one unit to another. An example of a conversion factor would be, for example, 1 L = 1000 mL, which can be manipulated as a fraction, either or ;
- Secondly, in order to convert mass to moles, we need to know the molar mass of a compound which has a units of g/mol (that is, it shows how many grams we have per 1 mole of substance.
- Thirdly, Avogadro's constant, tells us that there is number of molecules or atoms in 1 mole of substance. We need two conversion factors to convert the number of molecules to a mass: firstly, we need to convert the number of molecules into the number of moles using Avogadro's constant and then we need to use the molar mass to convert the moles obtained into mass.
Gypsum has the same hardness as a fingernail
Answer:
The new concentration is 2.03M
Explanation:
Step 1: Data given
A 200 mL 3.55 M HBr is diluted with 150 mL
Step 2: The dilution
In a dilution, the ratio that exists between the concentration of the stock solution and the concentration of the diluted solution equals the ratio that exists between the volume of the diluted solution and the volume of the stock solution.
Dilution factor = [stock sample]/[diluted sample] = diluted volume / stock volume
In this case, the volume of the stock solution is 200 mL
Adding 150 mL of water to the stock solution will dilute it to a final volume of 200 + 150 = 350 mL
The dilution factor wll be 350/200 = 1.75
This makes the diluted concentration:
3.55/1.75 = 2.03M
The new concentration is 2.03M
6 Carbon atoms
18 Oxygen atoms
12 Hydrogen atoms
I suggest watching Martin Shkerli YouTube channel. He has a ton of videos on chemistry and is very helpful.