The answer you are looking for would be a colliod. Hope this helps have a great day!!
Answer:
Genotypes: Homozygous (GG)=50%, Heterozygous (Gg)=50%.
Phenotypes: Homozygous gray (GG)=50%, Heterozygous gray (Gg)=50% or just Gray=100%
Explanation:
Hello,
The Punnett square for this cross turns into:
![\left[\begin{array}{ccc}&G&g\\G&GG&Gg\\G&GG&Gg\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%26G%26g%5C%5CG%26GG%26Gg%5C%5CG%26GG%26Gg%5Cend%7Barray%7D%5Cright%5D)
It means that the genotypes and phenotypes are:
Genotypes: Homozygous (GG)=50%, Heterozygous (Gg)=50%.
Phenotypes: Homozygous gray (GG)=50%, Heterozygous gray (Gg)=50% or just Gray=100%
Best regards.
The number in standard form is 0.480
Answer:
C) 712 KJ/mol
Explanation:
- ΔH°r = Σ Eb broken - Σ Eb formed
- 1/2Br2(g) + 3/2F2(g) → BrF3(g)
∴ ΔH°r = - 384 KJ/mol
∴ Br2 Eb = 193 KJ/mol
∴ F2 Eb = 154 KJ/mol
⇒ Σ Eb broken = (1/2)(Br-Br) + (3/2)(F-F)
⇒ Σ Eb broken = (1/2)(193 KJ/mol) + (3/2)(154 KJ/mol) = 327.5 KJ/mol
∴ Eb formed: Br-F
⇒ Σ Eb formed (Br-F) = Σ Eb broken - ΔH°r
⇒ Eb (Br-F) = 327.5 KJ/mol - ( - 384 KJ/mol )
⇒ Eb Br-F = 327.5 KJ/mol + 384 KJ/mol = 711.5 KJ/mol ≅ 712 KJ/mol