Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Answer:
djjdjfjfntjfjjfjxuxidie
Explanation:
hjdjfjjfjf urfjfjfuuijjjjjjjjjkjsjjsj
6 . . . . . a crest
7 . . . . . the amplitude
8 . . . . . the wavelength
9 . . . . . a trough
I'm gonna have to assume the girl is on the right side and boy on left.
The net force is the sum of all forces on an object (includes negatives).
Let's say the force of the boy is variable <em>b</em>. Use the formula F = ma.
<em>b </em>+ 3.5 = 0.2(2.5)
This is now simple algebra. Solve to get that <em />the boty is exerting a force of -3N to the left.
Answer:
Solids
Explanation:
Solids, liquids, and gases all have mass.