Answer:
352,088.37888Joules
Explanation:
Complete question;
A hiker of mass 53 kg is going to climb a mountain with elevation 2,574 ft.
A) If the hiker starts climbing at an elevation of 350 ft., what will their change in gravitational potential energy be, in joules, once they reach the top? (Assume the zero of gravitational potential is at sea level)
Chane in potential energy is expressed as;
ΔGPH = mgΔH
m is the mass of the hiker
g is the acceleration due to gravity;
ΔH is the change in height
Given
m = 53kg
g = 9.8m/s²
ΔH = 2574-350 = 2224ft
since 1ft = 0.3048m
2224ft = (2224*0.3048)m = 677.8752m
Required
Gravitational potential energy
Substitute the values into the formula;
ΔGPH = mgΔH
ΔGPH = 53(9.8)(677.8752)
ΔGPH = 352,088.37888Joules
Hence the gravitational potential energy is 352,088.37888Joules
Answer:
The beat frequency is 0.0019 MHz.
Explanation:
Given that,
Velocity = 0.32 m/s
Frequency = 4.40 MHz
Speed of wave = 1540 m/s
We need to calculate the frequency
Case (I),
Observer is moving away from the source
Using Doppler's effect

Where, v' = speed of observer
Put the value into the formula


Case (II),
Cell is as the source of sound of frequency f' and it moving away from the observer.
Using formula of frequency



We need to calculate the beat frequency


Hence, The beat frequency is 0.0019 MHz.
Velocity is the same as the formula for speed, the only difference is
velocity has direction. Velocity is distance over time. Given is 4,400
kilometers travelled west in 4 hours. Applying the given equation, we wil have
4,400/4 = 1,100 km/hr west
Part 1)
here we know that supply took 10 s to reach the ground
so here we will have




Part 2)
Here all the supply covered horizontal distance of 650 m in 10 s interval of time
so here we can say


